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ABSTRACT
Orthogonal Frequency Division Multiplexing (OFDM)
transmission is robust to frequency-selective channels but
sensitive to time-selective channels. Time variations of
channels destroy the orthogonality between subcarriers,
resulting in a considerable performance loss due to inter-
carrier interference (ICI) between subcarriers. In this paper,
we propose a Viterbi-type algorithm to effectively suppress
the ICI, by exploiting the property of ICI terms and null
subcarriers embedded in OFDM symbols for the reduction
of interferences from/to adjacent bands. Simulations show
that the proposed equalizer works well with affordable
complexity and outperforms linear equalizers.

I. INTRODUCTION

Severe time-varying multipath channels often arise in
high-rate digital transmissions. Conventional single-carrier
transmissions with linear equalization significantly suffer
from inter-symbol interference (ISI) resulting from the
multipath. Orthogonal Frequency Division Multiplexing
(OFDM) is a promising high-rate transmission technique,
which mitigates ISI by inserting cyclic prefix (CP) at the
transmitter. If the channel delay spread is shorter than the
duration of CP, ISI is completely removed. Moreover, if
the channel remains constant within one OFDM symbol
duration, OFDM renders a convolution channel into paral-
lel flat channels, which enables simple one-tap frequency-
domain equalization. OFDM has been adopted in wireless
LAN standards, e.g. , IEEE802.11a and HIPERLAN/2,
and in digital audio/video broadcasting. However, OFDM
is sensitive to channel variations, which arise from the
relative motion between the transmitter and the receiver as
well as from the presence of the carrier frequency offset
(CFO). They destroy the orthogonality between subcarriers
and generate inter-carrier interference (ICI). While the ICI
induced by a CFO may be compensated for at the receiver,
the ICI by the Doppler spread is not easily suppressed,
since signals from different paths have different Doppler
frequencies.

Assuming that the channel varies temporally in a linear
fashion, a frequency-domain equalizer was presented in

[1] but cannot be applied to rapidly time-varying channels
where the assumption does not hold true. Block-wise
equalizers based on zero forcing (ZF) and minimum mean
squared error (MMSE) criteria were considered in [2].
To enhance the performance, a successive interference
cancellation was incorporated into the equalization. A
low-complexity decision feedback equalizer (DFE) was
developed in [3] to reduce the computational complexity of
block-wise equalizers. Both equalizers exhibit better per-
formance than linear equalizers without decision feedback
but suffer from error propagations at low and moderate
SNR.

Maximum likelihood sequence estimator (MLSE) [4,
Sec. 10.1] is the optimal equalization scheme for mini-
mizing bit error rate (BER), while DFE is sub-optimal.
The Viterbi algorithm (VA) in the time domain for MLSE
is available [5]. VA is more efficient than the exhaustive
ML search but its complexity increases exponentially with
the channel length, which makes its utilization in high-rate
transmissions over multipath channels difficult.

In this paper, we propose a VA in the frequency domain
to suppress the ICI, by exploiting the structure of the
ICI and null subcarriers, which are originally set in each
OFDM symbol to mitigate interferences from/to adjacent
OFDM channels. Thanks to the ICI power concentration
in OFDM transmissions, the computational complexity of
the VA becomes affordable. The efficiency of the proposed
equalization is verified by numerical simulations. Under
reasonable settings, the VA with a short memory length is
shown to outperform linear equalizers, exhibiting a strong
robustness to the speed of the channel time variation.

II. SYSTEM MODEL AND PRELIMINARIES

We consider point-to-point wireless Orthogonal Fre-
quency Division Multiplexing (OFDM) transmissions over
time- and frequency-selective fading channels. For simplic-
ity, we only deal with one OFDM symbol duration.

Let the number of subcarriers be N . At the transmit-
ter, a serial information data sequence {s0, s1, . . . , sN−1}
undergoes serial-to-parallel (S/P) conversion to be stacked
into one OFDM symbol. Then, an N -points inverse fast
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Fourier transform (IFFT) follows to produce the N dimen-
sional data, which is parallel-to-serial (P/S) converted. A
cyclic prefix (CP) of length Ncp is appended in order to
mitigate the multipath effects. The discrete-time baseband
equivalent transmitted symbols can be expressed as

u(n) =
1√
N

N−1∑

k=0

skej 2πkn
N , n ∈ [−Ncp, N − 1]. (1)

Our discrete-time baseband equivalent FIR channel has
maximum order L, and is considered time-varying. We
assume that Ncp is greater than or equal to the channel
order L so that there is no inter-symbol interference (ISI)
between OFDM symbols. The received signal is written as

y(n) =
L∑

l=0

h(n, l)u(n − l) + w(n), (2)

where h(n, l) is the lth channel tap at time n and w(n)
is an additive white Gaussian noise (AWGN) with zero
mean and variance σ2

w. Let us define the channel frequency
response at frequency 2πk/N and at time n as

Hk(n) =
L∑

l=0

h(n, l)e−j 2πkl
N . (3)

At the receiver, we assume perfect timing synchroniza-
tion. After removing CP, we take an FFT of the received
signal to obtain for k ∈ [0, N − 1] that

Yk =
1√
N

N−1∑

n=0

y(n)e−j 2πkn
N =

N−1∑

n=0

Hk,nsn + Wk, (4)

where

Hk,n =
1
N

N−1∑

m=0

Hk(m)ej
2πm(n−k)

N , (5)

and Wk = 1√
N

∑N−1
n=0 w(n)e−j 2πkn

N .
If the channel is time-invariant, then the channel fre-

quency response Hk(n) given by (3) is constant in time
n. It follows from (5) that Hk,n = Hk(n)δ(n− k), where
δ(·) stands for Kronecker’s delta. In this case, we have
Yk = Hk(k)sk + Wk. There is no inter-carrier interfer-
ence (ICI) between subcarriers, which enables computa-
tionally efficient one-tap frequency-domain equalization
at kth subcarrier such that ŝk = H−1

k (k)Yk, where ŝk

is the output of the equalizer. However, channels are in
general time-varying due to the relative motion between
the transmitter and the receiver. This generates the ICI
term

∑N−1
n=0,n �=k Hk,nsn in the R.H.S. of (4). The one-

tap frequency-domain equalizer cannot compensate for the
effects of the ICI, resulting in a performance floor that
increases with the speed of the channel time variation.

From the received signal in (4), we form a receive vector
Y = [Y0, Y1, . . . , YN−1]T , which is expressed as

Y = Hs + W, (6)

where the (k, n)th entry of the channel matrix H
is Hk,n, s = [s0, s1, . . . , sN−1]T , and W =
[W0, W1, . . . , WN−1]T . We assume that the channel im-
pulse response is available at the receiver, e.g., by pilot
symbol aided channel estimation [2], [6].

For (6), linear block-wise equalizers to suppress the ICI
are readily constructed. The zero-forcing (ZF) equalizer
outputs (HHH)−1HHY , where (·)H denotes the com-
plex conjugate transposition of a matrix. On the other hand,
if the receiver knows the symbol variance σ2

s and the noise
variance σ2

w, the minimum mean squared error (MMSE)
equalizer becomes available, whose output is given by
(HHH+σ2

w/σ2
sI)−1HHY , where I stands for an N×N

identity matrix.
To enhance the performance, the MMSE equalizer with

successive interference cancellation was proposed in [2].
One symbol having the largest SNR is hard-detected based
on the MMSE equalizer output and then its contribution
is subtracted from the received vector. This procedure is
repeated until all symbols are detected. The construction
of linear equalizers requires O(N3) computations, which
is pretty heavy for large N . A low-complexity MMSE
based DFE has also been developed in [3], by utilizing
the structure of the channel matrix H . But both schemes
having decision feedback inevitably suffer from error prop-
agations. In the next section, we will propose a non-
linear equalization with affordable complexity, based on
maximum likelihood criterion.

III. ICI SUPPRESSION BY VITERBI ALGORITHM

At the receiver, the energy of sk at the kth subcarrier
is leaked only to its neighboring (in a circular fashion)
subcarriers [3]. Ignoring the ICI terms which do not
significantly affect the kth subcarrier, we assume that the
ICI terms come only from 2K neighboring subcarriers, i.e.,
A1 Hk,m = 0 for k + K < m < N − K + k, k ∈

[0, K −1], for |k−m| > K, k ∈ [K,N −K−1], and
for k − N + K < m < k − K, k ∈ [N − K,N − 1].

The channel matrix is illustrated in Fig. 1, where the entries
without dots are assumed to be zero.

We would like to obtain a maximum likelihood equalizer
under the assumption A1. Since ICI terms appear in a
circular fashion, an exhaustive search is required, which
makes its implementation difficult in practice. To avoid
the exhaustive search, we will exploit successive null
subcarriers, which are usually embedded in every OFDM
symbol to mitigate interferences from/to adjacent OFDM
channels. For example, IEEE 802.11a standard sets 11 null
subcarriers at k ∈ [27, 37].

Without loss of generality and for notational simplicity,
we put two successive null subcarriers at the top and the
bottom of s, i.e.,

sk = 0, k ∈ [0, NG1 − 1], k ∈ [N − NG2 , N − 1]. (7)
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Fig. 1. Channel matrix H

We assume that K ≤ NG1 and K ≤ NG2 . Then, taking
(7) into account, we can consider the first NG1 and the
last NG2 columns of H as zero vectors. It follows from
(4) that

Yk =
K∑

n=−K

Hk,nsn + Wk. (8)

Although the coefficients Hk,n vary in k, Yk depends only
on 2K + 1 successive sn. Thus, a dynamic programming
approach can be applied to obtain the optimal maximum
likelihood sequence, which results in a Viterbi Algorithm
(VA).

Suppose that the constellation is drawn from a finite
alphabet of size NA. Let us define the state Sk as Sk =
[sk+K−1, sk+K−2, . . . , sk−K ]. Then, the number of states
is N2K

A . We denote the estimate of sn as ŝn and define
the estimate of Yk as

Ŷk =
K∑

n=−K

Hk,nŝn. (9)

To obtain all possible Ŷk, (2K + 1)N2K+1
A computations

are required.
Let the probability density function of the

received sequence {Y0, Y1, . . . , Yk} conditioned
on the transmitted sequence {s0, s1, . . . , sk+K} be
p(Y0, Y1, . . . , Yk|s0, s1, . . . , sk+K). Under the assumption
A1, since the noise is AWGN, the log-likelihood function
at k, defined as

Lk := log p(Y0, Y1, . . . , Yk|s0, s1, . . . , sk+K),

can be factored into

Lk = Lk−1 −
∣∣∣Yk − Ŷk

∣∣∣
2

. (10)

We compute for every state, the path metric |Yk − Ŷk|2
of NA possible state transitions, which requires N2K+1

A
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Fig. 2. BER comparison for fdTc = 0.001

computations. Then, we select a state transition, or equiv-
alently a surviving path in the state-diagram trellis, that
has the maximum log-likelihood for that state, to obtain
candidates of the maximum likelihood sequence. In total,
our algorithm requires O[2(K + 1)N2K+1

A ] computations
per information symbol.

Suppose a QPSK constellation, i.e., NA = 4, and take
K = 2. Let N be 64. Then, the complexity per information
symbol of our algorithm is about 2 ·3 ·45 = 1.5 ·212, which
is comparable with the complexity O(643/64) = O(212)
of the linear equalizers. The complexity of our algorithm
depends on the constellation size NA and the value of
K, while the complexities of linear equalizers depend on
the number of subcarriers N . As shown by simulations,
even for rapidly changing channels, small K is enough
to achieve moderate performance. Thus, for small NA

and large N , our non-linear equalization becomes more
computationally efficient than linear equalizations.

IV. NUMERICAL EXAMPLES

We test the proposed VA with K = 1, 2, 3 for different
maximum Doppler frequencies. Each OFDM symbol has
64 subcarriers with 4 successive null subcarriers at the
frequency edges. Of 64 subcarriers, 56 are used to carry
information data.

We generate 103 Rayleigh channels, having 8 complex
zero-mean Gaussian taps with identical power profile.
Channel taps are independent of each other and fade
according to the Jakes fading model [7], where each tap is
generated as in [8]. The length of the cyclic prefix is 8 so
that there is no ISI.

BPSK constellation is adopted. We compare BER of
VA with BERs of one-tap equalizer and ZF equalizer. For
K = 1, 2, 3, our VA equalizer requires about 4 · 23 =
32, 6 · 25 = 192, and 8 · 27 = 1024 computations
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Fig. 3. BER comparison for fdTc = 0.002
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Fig. 4. BER comparison against the maximum Doppler
frequency at a fixed Eb/No = 20dB

per information symbol, while the ZF equalizer requires
O(4096) computations per information symbol.

For fdTc = 0.001, where fd and Tc respectively denote
the maximum Doppler frequency and the chip duration
time, BER performance of our tested systems are illustrated
in Fig. 2. The matched filter bound (MFB) [3] is also
plotted, which is the best performance if ICI is completely
canceled without noise enhancement.

One-tap equalizer exhibits a performance floor at high
SNR due to ICI, since it does not take the ICI into account
at all. The ZF equalizer does not have a performance floor
and outperforms the one-tap equalizer. Even with K = 1,
VA has better performance than ZF equalizer. For VA, no
significant improvement can be seen in increasing from
K = 2 to K = 3. This implies that most of the ICI on each
subcarrier comes from its four neighboring subcarriers.

Fig. 3 depicts BER performances for relatively fast
fading channels with fdTc = 0.002. Compared with the
former case, the performances of one-tap equalizer and ZF
equalizer degrade, while the performance of VA remains
more or less unchanged. The VA with K = 1, whose
computational complexity per information symbol is just
32, significantly outperforms the ZF equalizer.

To see the impact of the maximum Doppler
frequency on BER performance, Fig. 4 shows
BERs for different maximum Doppler frequencies,
(0, 0.0005, 0.001, 0.002, 0.004), at a fixed Eb/N0 = 20dB.
Increase in the channel time variation has two major
effects: i) More ICI power arises, which degrades the BER
performances of one-tap equalizer and ZF equalizer. ii)
More time diversity gain becomes available, as suggested
by the MFB, which enhances BER performance if ICI is
suppressed appropriately. As can be seen in Fig. 4, VA
is robust to the maximum Doppler frequency, balancing
the two contradicting Doppler frequency effects. Up to
fdTc = 0.004, the VA even with K = 1 achieves the same
performance without ICI, i.e., fd = 0. This highlights the
robustness of VA to the channel time variation.
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