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ABSTRACT

A generalization of the BCJR algorithm is derived to compute joint
posterior probabilities of arbitrary sets of symbols given received
data. A special case of the new algorithm that computes pairwise
joint probabilities is used to evaluate the second order statistics
needed for EM estimation of carrier phase and symbol timing off-
sets in a digitally modulated waveform. This EM estimator is inte-
grated into a turbo synchronization loop in which soft information
is exchanged between the generalized BCJR algorithm (the syn-
chronizer) and an LDPC decoder.

1. INTRODUCTION

This paper considers the problem of synchronizing a digital com-
munication receiver to a carrier signal that is modulated by a root-
Nyquist pulse train in which the symbols are protected by LDPC
coding [1]. At the receiver, the sampled matched filter outputs
contain an unknown phase rotation and intersymbol interference
(ISI) due to sample timing offset. The phase and time offsets are
unknown and must be estimated. In a turbo receiver, errors in
phase and timing estimates degrade the accuracy of the informa-
tion exchanged during turbo iterations which increases the number
of iterations needed to achieve decoding success and may prevent
successful decoding altogether.

In this paper, carrier phase and symbol timing are estimated
anew in each turbo iteration. Expectation maximization [2] (EM)
is used as the basis for estimation. The EM equations describ-
ing the optimum phase and sample times depends on the first and
second order posterior conditional statistics of the symbols (pos-
terior conditional mean and covariance) which require single vari-
able marginal and pairwise joint posterior probabilities for their
evaluation. Single variable posterior probabilities are computed
by both standard LDPC decoder and BCJR algorithm. However,
neither LDPC or BCJR provides higher order joint probabilities.
Pairwise joint probabilities may be computed using a generalized
BCJR algorithm which is derived in this paper. The generalized
BCJR computes the joint posterior probability of arbitrary sets of
symbols given received data. Pairwise joint probabilities are ob-
tained as a special case. Simulation results comparing generalized-
BCJR-based turbo synchronization to the ideal case in which phase
and timing are known precisely are given in Section 4. The paper
begins by establishing the data model (Section 2) and sets up the
carrier phase and symbol timing estimation problem using expec-
tation maximization.

Phase and timing estimation based on EM was originally per-
formed in [3] but was not done in combination with decoding.
Zhang and Burr [4] used extrinsic information produced during
turbo decoding in a standard maximum likelihood based carrier
phase estimator. Hard symbol decisions from the output of the
turbo decoder were fed back to the phase estimator. Nuriyev and

Anastasopoulos [5] used an optimal strategy to allocate power to
a single pilot symbol inserted at the beginning of block of LDPC
encoded bits for iterative carrier phase estimation. Carrier phase
estimation was combined with turbo codes in [6]. Joint timing
recovery and turbo equalization was investigated in [7, 8].

A general framework for turbo synchronization based on the
EM algorithm was presented by Noels, et al. [9]. However, [9]
used a simplifying assumption that made it possible to estimate
unknown parameters using only the single variable marginal poste-
rior probabilities computed by turbo decoders. Lottici and Luise [10]
embedded carrier phase recovery into the iterations of a turbo de-
coder with the assumption of zero ISI to simplify the EM equations
as in [9] so that only single variable posteriors were involved.

The following notation is used in the remainder of the paper.
Boldface upper and lower case letters are used to denote matrices
and vectors, respectively. The notation [A](i,j) and [a]i is used to
refer to specific elements of matrices and vectors. The dimensions
of matrices and vectors will be given when defined. The notation
A � B is the element-by-element product of the two matrices A

and B. The Kronecker delta function δk will be used: δk = 1 if
k = 0 and δk = 0 if k �= 0. The notation n ∼ N (µ,C) indicates
that n is a vector with jointly Gaussian distributed elements with
mean µ and covariance C.

2. DATA MODEL

Consider a bandpass BPSK transmitted signal,

s(t) =

N−1X
n=0

sng(t − nT )
√

2 cos(2πfct), (1)

where sn ∈ {+√E ,−√E} are BPSK symbols, g(t) is a causal,
unit-energy, square-root Nyquist pulse of duration t0, T is the
symbol period, and fc is the carrier frequency. In this paper, the
symbols sn are derived from bits appearing at the output of an
LDPC encoder via the map: 1 → +

√E , 0 → −√E . The code
word length is N bits. Therefore, (1) represents an isolated trans-
mission of a single LDPC codeword.

Propagation delay in the channel leads to a time delay τ0 in
the received pulse train and a carrier phase offset ϕ0 as follows,

r(t) =

N−1X
n=0

sng(t − nT − τ0) cos(2πfct + ϕ0) + n(t).

Time and carrier phase offsets in this paper are defined relative to
the transmitter. Additive white Gaussian noise with (two-sided)
power spectral density N0/2 has also been added.

After I/Q demodulation using the a phase of ϕ1, matched fil-
tering and sampling at time t = t0 + kT + τ1, the pair of samples
taken during the kth symbol period may be written in vector form
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as,

yk =

»
cos ϕ
sin ϕ

–N−1X
n=0

snRgg([k − n]T − τ) + nk, (2)

nk ∼ N
„
0,

N0

2
I2×2

«
.

where ϕ = ϕ0 − ϕ1 is the phase error, τ = τ0 − τ1 is the sample
timing offset, and

Rgg(t) =

Z t0

−∞

g(ν + t)g(ν)dν

is the pulse autocorrelation function. Since g(t) is a square-root
Nyquist pulse, Rgg(t) is a Nyquist pulse. Therefore, Rgg([k −
n]T − τ) = δk−n if and only if τ = 0. In this paper, we assume
that the timing error is less than a half symbol period, |τ | < T

2
.

The support of Rgg(τ) is 0 ≤ t ≤ 2t0. Let P be the number
of whole symbol periods of duration T in 2t0 seconds and let α
be the fractional remainder, P = � 2t0

T
	 and α = 2t0

T
− P . Let

β = τ
T

. Then |β| < 1
2
. Now, since Rgg(τ) = 0 for τ < 0 and

τ > 2t0, the only values of n for which Rgg([k − n]T − τ) is
nonzero are in the range k − β − [P + α] ≤ n ≤ k − β. Define
Q as follows,

Q = 
P + α + 1� =

(
P + 1 α = 0

P + 2 0 < α < 1
.

Now (2) may be written as,
yk = c(ϕ)sT

k p(τ) + nk, k = 0, · · · , N + Q − 2

with the definition of the vectors
c(ϕ) =

ˆ
cos ϕ sin ϕ

˜T
sk =

ˆ
sk sk−1 · · · sk−Q+1

˜T
p(τ) =

ˆ
Rgg(0 · T − τ) · · · Rgg([Q − 1] · T − τ)

˜T
.

In the preceeding development, the timing error and phase off-
set were implicitly assumed to be constant over the whole data
block. However, the development can be generalized so that both
of these parameters are time varying. To account for this gener-
alization, subscripts shall be added to the parameters to indicate
the time at which they are applicable. Maximum likelihood esti-
mates for the symbol timing error, τn, and the carrier phase offset,
ϕn, at time n based on the single sample yn may be obtained by
minimizing − log p(yn|τn, ϕn) where p(yn|τn, ϕn) is the prob-
ability density function of yn parameterized by the unknowns τn

and ϕn. However, due to the presence of unknown symbols, only
the distribution p(yn|sn, τn, ϕn) is available. When applied to the
problem of synchronization, the EM principle begins with initial
estimates τ

[0]
n and ϕ

[0]
n and iteratively minimizes, 

τ
[i+1]
n

ϕ
[i+1]
n

!
= arg min

τ,ϕ

(
‖yn‖2 − 2cT (ϕ)B

[i]
n p(τ)

+pT (τ)R
[i]
n p(τ)

)
(3)

where τ
[i]
n and ϕ

[i]
n are estimates of τn and ϕn obtained on the ith it-

eration, and where the matrices R
[i]
n = E(snsT

n |yn, τ
[i]
n , ϕ

[i]
n ) and

B
[i]
n = ynE(sT

n |yn, τ
[i]
n , ϕ

[i]
n ) are the posterior conditional auto-

correlation of the symbols and cross-correlation between symbols
and data. Given τ , the minimum of (3) with respect to ϕ is easily
found to be,

ϕ[i+1]
n = arctan

[B
[i]
n p(τ)]2

[B
[i]
n p(τ)]1

. (4)

In evaluating (4), τ is replaced by τ
[i]
n . Note that the solution for

ϕ
[i]
n only depends on the first order statistics (posterior conditional

mean) of the symbols contained in B
[i]
n .

A closed form solution for τ
[i+1]
n is difficult because τ appears

in the argument of the pulse. The minimization with respect to τ
in (3) may be carried out by gradient descent. The gradient of (3)
is easily calculated to be

g(τ, ϕ) = 2
h
c

T (ϕ)B[i]
n − p

T (τ)R[i]
n

i ∂p(τ)

∂τ
. (5)

3. COMPUTING JOINT A POSTERIORI
PROBABILITIES WITH A GENERALIZED BCJR

ALGORITHM

The BCJR algorithm [11] is commonly used to compute single
variable posterior probabilities. A generalization of the BCJR al-
gorithm showing how to compute joint posterior probabilities of
arbitrary sets of symbols is presented which reproduces the stan-
dard BCJR algorithm as a special case. Formulas for computing
the joint posterior probability of a pair of symbols will be derived
first. From this, formulas for joint posterior probabilities of arbi-
trary sets of symbols is easily inferred.

Suppose a sequence of M -ary symbols {sn}N−1
n=0 is passed

through an ISI channel with L memory elements and impulse re-
sponse h0, · · · , hL. The channel may be in one of Q = ML

states (sk−1, · · · , sk−L). Let ξk ∈ {0, · · · , Q − 1} be the state
index at time k. Let Y = {y0, · · · , yN+L−1} be the set of mea-
surements (sampled matched filter outputs) at the receiver where
yk =

PL

�=0 h�sk−� + nk = sT
k h + nk. Given the distribution

of the noise and the channel impulse response, likelihoods such as
p(yk|sk) may be computed. We desire to evaluate the posterior
probability P (sk = a, s� = b|Y ) where, without loss of general-
ity, 
 > k.

Let Qa,k be the set of all state transitions at time k caused
by the input symbol sk = a. For example, (p, q) ∈ Qa,k if
sk = a caused a transition from state ξk = p to state ξk+1 = q.
With these definitions, the question about the joint probability of
symbols sk, s� may be transformed into a question about the joint
probabilities of states as follows,

P

„
sk = a,
s� = b

˛̨̨
˛Y
«

=

P
(p, q) ∈ Qa,k

(r, s) ∈ Qb,�

P

0
B@

ξk = p,
ξk+1 = q,
ξ� = r,
ξ�+1 = s

˛̨̨
˛̨Y
1
CA .

Following reasoning similar to that used in standard BCJR devel-
opments [11], split the data into the five sets, Y = (Yn<k, yk,
Yk<n<�, y�, Yn>�), where Yn<k = {y1, · · · , yk−1}, Yk<n<� =
{yk+1, · · · , y�−1} and Yn>� = {y�+1, · · · , yN}. By careful use
of conditioning, the joint probability of the states may be factored
as,
P (ξk = p, ξk+1 = q, ξ� = r, ξ�+1 = s|Y )P (Y )

= P (ξk = p, ξk+1 = q, ξ� = r, ξ�+1 = s,

Yn<k, yk, Yk<n<�, Y�, Yn>�)

= P (Yn>�|ξ�+1 = s, ξ� = r, ξk+1 = q, ξk = p,

y�, Yk<n<�, yk, Yn<k)

× P (y�, ξ�+1 = s|ξ� = r, ξk+1 = q, ξk = p, Yk<n<�, yk, Yn<k)

× P (Yk<n<�, ξ� = r|ξk+1 = q, ξk = p, yk, Yn<k)

× P (yk, ξk+1 = q|ξk = p, Yn<k)

× P (Yn<k, ξk = p).
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The conditional probabilities may be simplified by invoking the
following two facts:

1. y� is conditionally independent of yk for all k < 
 given
the state ξ�, and

2. the state ξ�+1 is conditionally independent of ξk for all k <

 given ξ�.

Application of these independence properties leads to the follow-
ing simplifications,

P

„
Yn>�|ξ�+1 = s, ξ� = r, ξk+1 = q,

ξk = p, y�, Yk<n<�, yk, Yn<k

«
= P (Yn>�|ξ�+1 = s)

P

„
y�, ξ�+1 = s|ξ� = r, ξk+1 = q,

ξk = p, Yk<n<�, yk, Yn<k

«
= P

„
y�, ξ�+1 = s

|ξ� = r

«

P

„
Yk<n<�, ξ� = r|ξk+1 = q,

ξk = p, yk, Yn<k)

«
= P

„
Yk<n<�, ξ� = r

|ξk+1 = q

«
P (yk, ξk+1 = q|ξk = p, Yn<k) = P (yk, ξk+1 = q|ξk = p)

Inserting these simplified probabilities along with the definitions
of α, β, and γ from the standard BCJR algorithm,

αk(p) = P (Yn<k, ξk = p),

β�+1(s) = P (Yn>�|ξ�+1 = s),

γk(p, q) = P (yk, ξk+1 = q|ξk = p, Yn<k),

leads to the following formula for the pairwise joint probability,
P (ξk = p, ξk+1 = q, ξ� = r, ξ�+1 = s|Y )P (Y ) = (6)

αk(p)γk(p, q)P (Yk<n<�, ξ� = r|ξk+1 = q)γ�(r, s)β�+1(s).

The only new quantity appearing in (6) is P (Yk<n<�, ξ� = r|
ξk+1 = q) which is the probability of observing yk+1, · · · , y�−1

and ending in state r at time 
 given that channel started in state
q at time k + 1. This probability can be factored into sums and
products of likelihoods and transition probabilities. To see this,
consider the following special cases.

• Suppose 
 = k+1. Then, Yk<n<� = {} and the probability
in question is simply P (ξk+1 = r|ξk+1 = q) = δr−q = 1
if r = q and 0 otherwise.

• If 
 = k+2, then Yk<n<� = {yk+1} and P (yk+1, ξk+2 =
r|ξk+1 = q) = γk+1(q, r) by definition.

• More interesting situations arise when 
 > k + 2. Let 
 =
k + 3. Then Yk<n<� = {yk+1, yk+2}. Introduce a new
state variable ξk+2 and marginalize it out as follows,

P (yk+2, yk+1, ξk+3 = r|ξk+1 = q)

=
X
u∈Q

P (yk+2, yk+1, ξk+3 = r, ξk+2 = u|ξk+1 = q)

=
X
u∈Q

P (yk+2, ξk+3 = r|ξk+2 = u)×
P (yk+1, ξk+2 = u|ξk+1 = q)

=
X
u∈Q

γk+2(u, r)γk+1(q, u).

• Following the same procedure when 
 = k + 4 leads to
P (yk+2, yk+1, ξk+3 = r|ξk+1 = q)

=
X
u∈Q

X
v∈Q

γk+3(u, r)γk+2(v, u)γk+1(q, v).

• In general, for any 
 > k,
P (Yk<n<�, ξ� = r|ξk+1 = q)

=
X
u1

X
u2

· · ·
X

u�−k−2

8>>><
>>>:

γ�−1(u�−k−2, r)×
...

γk+2(u1, u2)×
γk+1(q, u1)

9>>>=
>>>;

, (7)

in which there are 
 − k − 2 sums involving products of

 − k − 1 γi(u, v) terms.

Thus we see that computing arbitrary pairwise joint posterior prob-
abilities uses quantities already computed in the standard forward-
backward recursions.

The sum-product form of (7) is reminiscent of repeated matrix
multiplication. In [12], writing down the BCJR equations in matrix
form led to a very compact description of the algorithm. Here, ma-
trix notation also simplifies the formulas for the joint probabilities
of arbitrary sets of symbols.

Below, the BCJR algorithm is expressed in both sum-product
form and in the more compact matrix-vector form. Unless spec-
ified otherwise, all summations are over all Q states. To rewrite
sums over transitions (p, q) ∈ Qa,k, define the zero-one matrix
Aa,k with elements defined by [Aa,k](p,q) = 1 if (p, q) ∈ Qa,k

and is zero otherwise. Also define the matrix Γk and vectors
αk(p) and βk(p) by [Γk](p,q) = γk(p, q), [αk]p = αk(p), and
[βk]p = βk(p).
Forward-Backward Equations:

αk+1(q) =
X

p

αk(p)γk(p, q) α
T
k+1 = α

T
k Γk

βk(p) =
X

q

γk(p, q)βk+1(q) βk = Γkβk+1

Single Variable Marginal A Posteriori Probability:

P (sk = a|Y ) =

P
(p,q)∈Qa,k

αk(p)γk(p, q)βk+1(q)P
p

P
q αk(p)γk(p, q)βk+1(q)

=
αT

k (Γk � Aa,k) βk+1

αT
k Γkβk+1

The probability calculation in (7) may be written in matrix notation
as,

P (Yk<n<�, ξ� = r|ξk+1 = q)

=

"
�−1Y

i=k+1

Γi

#
(q,r)

=

8>>><
>>>:

[I](q,r) = δr−q 
 = k + 1,

[Γk+1](q,r) = γk+1(q, r) 
 = k + 2,

[Γk+1Γk+2](q,r) 
 = k + 3,

[Γk+1 · · ·Γ�−1](q,r) 
 ≥ k + 4

Using this result, the pairwise joint probability in (6) becomes,
Pairwise Joint A Posteriori Probability:

P (sk = a, s� = b|Y )

=
αT

k (Γk � Aa,k)
hQ�−1

i=k+1 Γi

i
(Γ� � Ab,�) β�+1

αT
k Γkβk+1

.

This formula is easily extended to higher order joint probabilities.
Define the event I = {sk1

= a1, · · · , skJ
= aJ} where without

loss of generality k1 < k2 < · · · < kJ . The joint posteriori prob-
ability of I given Y is,
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General Joint A Posteriori Probability:

P (I|Y ) = α
T
k1

(Γk1
� Aa1,k1

)

×
2
4 k2−1Y

i=k1+1

Γi

3
5 (Γk2

� Aa2,k2
)

×
2
4 k3−1Y

i=k2+1

Γi

3
5 (Γk3

� Aa3,k3
)

...

×
2
4 kJ−1Y

i=kJ−1+1

Γi

3
5 (ΓkJ

� AaJ ,kJ
) βkJ+1/α

T
k Γkβk+1.

4. SIMULATIONS

Five hundred independent trials were performed at several differ-
ent SNRs. In each trial, random carrier phase, symbol timing off-
set, and noise sequence were generated. The observations and uni-
form priors were input to the EM-based turbo synchronizer. Our
experiments showed that good initial guesses for τ and ϕ helped
the EM-based turbo synchronizer to converge quickly. A technique
for arriving at good initial guesses was developed and used in the
simulations. Space limitation does not permit elaboration on this
technique here. In our simulations, turbo iterations stop when ei-
ther the LDPC decoder successfully decodes or a maximum of 10
turbo iterations is reached. Figure 1 shows RMS errors of phase
and timing estimates generated by EM versus turbo iteration num-
ber. The estimates converge rapidly to less than one hundredth
of a radian (in phase) and less than one hundredth of a symbol
period (in time). Figure 2 illustrates the bit error rate (BER) per-
formance of the EM-based turbo synchronizer compared a turbo
synchronizer in which the phase and timing offset are known ex-
actly. The EM-based turbo synchronizer performs as well after 10
iterations as a parameter informed turbo synchronizer. Also shown
is the BER performance of a parameter informed turbo synchro-
nizer when there is no phase or timing error. It appears that there
is an average penalty of about 1 dB associated with synchronizing
to an unknown phase and timing offset. A length 20,000, rate 1

2
LDPC code was used in these simulations.
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Fig. 1. Phase and timing timing estimation error.

1 1.5 2 2.5
10

7

10
6

10
5

10
4

10
3

10
2

10
1

B
E

R

SNR (dB)

Known τ , ϕ

Turbo
Synchronization

Known ϕ= τ =0

Fig. 2. BER after ten turbo iterations.
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