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ABSTRACT

Phase locked loops (PLL) for RF carrier synthesis often em-
ploy oscillators that insert a considerable amount of time
varying phase noise into the received signal. That noise
must then be removed in digital basebandreceiver. This
phase noise is an indivisible superposition of noise com-
ponents from receiver and transmitter. Regarding to sys-
tems with multiple transmit and receive antennas (MIMO)
and if multiple PLLs for carrier synthesis are used each of
the superposed phase noise processes per transmit and re-
ceive antenna pair can be measured at the receiver. This
paper provides a new scheme for high SNR scenarios that
exploits spatial correlation between these overlaying phase
noise processes at the receiver in order to improve estima-
tion and compensation of the phase noise. Therefore the
Wiener filter approach is applied.

1. INTRODUCTION
Modern communication systems suffer – and will probably
always do – from impairments due to non-ideal RF front
ends. Because of strict financial constraints, RF compo-
nents with non-ideal properties e.g. with nonlinearities and
noise effects are used. Regarding to carrier frequency syn-
thesis RF oscillators used in phase locked loops (PLL) often
introduce a considerable amount of time varying phase al-
terations into the signal. This carrier signal is used for both,
converting the baseband signal in the transmitter to band-
pass range and, after transmission over the channel, in the
receiver back to baseband. The inherent phase noise in the
carrier becomes a dominant source of signal distortion in
several current broadband systems like e.g. in wireline and
satellite communications or directed microwave radio links.

The phase noise can be described by a time-varying ran-
dom walk process with a limited bandwidth. Hence, by ex-
ploiting noise correlation in time this random process can
be estimated and compensated in the receiver. Good re-
sults have been obtained employing data aided (DA) esti-
mation algorithms [1] that extract information on the phase
variations from pilot signals inserted in the data stream. A
linear minimum mean square error approach (LMMSE) of
an estimator for a broadband single carrier system using
Wiener filters is proposed in [2]. Most other literature is
concerned with the significantly different case of OFDM
systems [4],[3].
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When considering the phase noise problem in the MIMO
environment with NT transmit and NR receive antennas
with each antenna having independent circuitry for carrier
synthesis the task is extended to an estimation and compen-
sation of NT ·NR phase noise processes. Although the orig-
inal phase noise processes are spatially uncorrelated due to
the individual circuitry, it will be shown in this paper that the
resulting processes as seen from the receiver are correlated
in time and space. The easiest but suboptimum solution
is based on the SISO approach [2] and neglects all spatial
correlations using the proposed Wiener filter for each noise
process. The refinement exploits the spatial noise correla-
tion in the filter design process. As the resulting estimates
of the noise processes are based on the received pilot data of
all observations a vector estimator as described e.g. in [7]
and worked out for two antennas in [5] is obtained. The re-
duced estimation error can be used for increasing the pilot
spacing while maintaining the same overall estimation er-
ror and respectively reducing the overall number of pilots.
The higher losses due to aliasing can be traded off with
an increased power efficiency of the transmission. Alter-
natively even cheaper analogue equipment that introduces
more phase noise in the system can be employed.

This remaining text is organized as follows: in Part 2 the
underlying signal model and the correlations are explained.
Part 3 deals with the derivation of the estimation filter from
Wiener filter theory while in Part 4 the resulting estimation
errors of the new estimation scheme are discussed and com-
pared with the standard temporal estimator. The paper is
concluded and summarized in Part 5.

2. PHASE NOISE IN MIMO SYSTEMS
The underlying system consists of a transmitter with NT
antennas and a receiver with NR receive antennas. At time
instance k a transmit signal vector sk of dimension NT is
conveyed via a complex valued NR × NT channel matrix
Hk to the receiver which results in the received signal vec-
tor

rk = JRx;kHkJTx;ksk + nk (1)

of dimension NR. The diagonal matrices JT and JR with
dimensions NT and NR represent the transmitter respec-
tively receiver phase noise effects. Their diagonal elements
consist of a complex phasor of magnitude 1 with the phase
φ

(T )
n;k for the transmitter and φ

(R)
m;k for the receiver phase

noise. The noise vector nk is composed of NR uncorre-
lated white gaussian noise samples with the auto-covariance
matrix Cnn = σ2

nINR
wherein INR

is the unity matrix of
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dimension NR × NR. Strictly speaking the AWGN is also
rotated by the receiver phase noise but AWGN is invariant
to this phase rotation.

Then, the signal at the m-th receive antenna can be ex-
pressed as

rm;k =
NT∑
n=1

ej[φ
(T )
n;k+φ

(R)
m;k]hmn;ksn;k + nm;k (2)

i.e. each of the NT interfering transmitted signals is dis-
torted by the sum-process

ϕmn;k = φ
(T )
n;k + φ

(R)
m;k. (3)

In principle the NT ·NR sum-processes can be estimated us-
ing NT orthogonal pilot symbols. But the conclusion back
on their original processes is not possible as the next para-
graph will show. If we gather these original phase noise
processes in one vector

φk =
(
φ

(T )
1;k , φ

(T )
2;k , . . . φ

(T )
NT ;k, φ

(R)
1;k , . . . φ

(R)
NR;k

)T

(4)

and the sum-processes in another vector

ϕk =(ϕ11;k,. . . ϕ1NR;k, ϕ21;k, . . . ϕ2NR;k, . . . ϕNT NR;k)T

(5)
a matrix G interrelates the sum-processes to their original
counterparts:

ϕk = Gφk. (6)
The resulting (NRNT ) × (NR + NT ) matrix

G = (INT
⊗ 1NR

1NT
⊗ INR

)
= (g1 g2 . . . gNT +NR) (7)

that can be divided into its column vectors gi has not full
column rank due to the systematic nature of the matrix.
Therein 1L denotes a column vector of length L with one
entries and ⊗ describes the Kronecker product of two ma-
trices. The first column vector g1 can always be expressed
as the sum of the last NR column vectors minus the sum of
the rest of the first NT − 1 column vectors:

g1 =
NT +NR∑
v=NT +1

gv −
NT∑
v=2

gv (8)

Hence it is not possible to extract the processes φ
(T/R)
n;k from

the sums: the pilot data based approach on estimating the
phase noise does not allow to conclude on the original pro-
cesses φ

(T )
n;k and φ

(R)
m;k but on their sum-process ϕmn;k. A

plausible non-mathematical explanation for that is a miss-
ing of a reference phase.

The phase noise itself is usually modelled as time con-
tinuous random walk process i.e. the process is given by the
integration

φ(t) =
∫ t

−∞
ξ(τ)dτ (9)

wherein ξ(τ) can be assumed zero mean Gaussian. There-
fore the phase noise process φ(t) is completely described by
its autocorrelation function

rφ =
∫ ∞

−∞
φ(t)φ(t + τ)dt (10)
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Fig. 1. Typical example PSD of a PLL

(here as temporal mean thanks to ergodicity of φ) or equiva-
lently by its power spectral density (PSD). Thus, these phase
noise processes are characterized by their PSD given in so
called phase noise masks e.g. like depicted for a devised but
representative characteristic in Fig. 1.

Although the original processes cannot be estimated their
occurrence in the different sum-processes can be exploited
in terms of their correlations. Presuming uncorrelated pro-
cesses at receiver and transmitter, that means for a common
transmitter n and receive antennas m1 and m2:

E {ϕm1nϕm2n} = E
{

(φ(T )
n;k+φ

(R)
m1;k

)(φ(T )
n;k+φ

(R)
m2;k

)
}

= E
{

φ
(T )
n;k

2}
+E

{
φ(R)

m1
φ

(R)
m2;k

}
(11)

with n ∈ {1 . . . NT } and m1,2 ∈ {1 . . . NR}. For inde-
pendent phase noise processes i.e. independent PLLs at the
receiver the second sum term vanishes.

E {ϕm1nϕm2n} = E
{

φ(T )
n

2
}

(12)

A similar relation holds for signals from a common receive
antenna

E {ϕmn1ϕmn2} = E
{

φ(R)
m

2
}

. (13)

Although the phase noise signal as such is not band-limited,
in this paper, aliasing effects will not be taken into account
in the derivation due to the limitations in space but the re-
sults also comprise degradation due to insufficient sampling
frequency.

3. WIENER FILTER DESIGN
The Wiener filter approach applied to our example is based
on a set of observations ηmn;k of the phases ϕmn,k in ra-
dians from which an estimate ϕ̂mn,k is computed. For this
application in the high SNR region, an observation consists
of the phase noise sum-process and additive noise that can
be approximated in the high SNR range as real valued white
Gaussian noise ñmn;k with power σ2

n/2 (compare eq. (2)):

ηmn;k = arg (hmn;ks∗n;k) ≈ ϕmn;k + ñmn;k. (14)

F temporal observations of one process at pilot rate 1
PS

are
then gathered in a column vector ηmn. With the short cuts
L = �F/2� · PS and λ = l · PS this vector becomes

ηmn;λ = (ηmn;λ−L ηmn;λ−L+1 · · · ηmn;λ−L+F )T (15)
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In order to gain the vector ηλ of all observations these vec-
tors ηmn;λ are stacked in order of columns before rows such
that

ηλ = (ηT
11;λ · · ·ηT

NR1;ληT
12;λ · · ·ηT

NRNT ;λ)T (16)

From the auto-covariance matrix of these observations

Cηη = Cϕϕ + Cññ (17)

and the cross-covariances Cηϕ between observations and
the estimated parameter, it is straight forward to design the
respective Wiener filters corresponding to a symmetric, tem-
poral observation window of length K. The Wiener-Hopf
equation is written e.g. according to [7] as

w = C−1
ηη Cηϕ. (18)

The aim of the following paragraph is to compute the re-
spective covariance matrices. The auto-covariance matrix
from (17) is found to have block-matrix structure :

Cηη=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Cη11η11 Cη11η21 · · · Cη11ηNRNT

Cη21η11 Cη21η21 · · · Cη21ηNRNT

...
...

...
CηNR1η11 CηNT 1η21 · · · CηNT 1ηNRNT

Cη12η11 Cη12η21 · · · Cη12ηNRNT

...
...

...
CηNRNT

η11CηNRNT
η21 · · ·CηNRNT

ηNRNT

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(19)
For the partial auto-covariance matrices Cηαβηγδ

where α, γ
∈ [1, NR] and β, δ ∈ [1, NT ] four cases are distinguished:

(1.) α = γ and β = δ (like for the single antenna phase
estimator)

Cηαβηαβ
= Cϕαβϕαβ

+
σ2

n

2
· I. (20)

(2.) α �= γ and β = δ (observation signal streams incor-
porating the same transmit oscillator)

Cηαβηγβ
= Cϕαβϕγβ

. (21)

(3.) α = γ and β �= δ (Observation signal streams incor-
porating the same receive oscillator)

Cηαβηαδ
= Cϕαβϕαδ

. (22)

(4.) α �= γ and β �= δ (Observation signal streams are
totally independent)

Cηαβηγδ
= Cϕαβϕγδ

. (23)

In the cases 2, 3 and 4 the AWGN term disappears as the re-
spective noise processes are spatially uncorrelated. Strictly
speaking spatial independency only holds for pilot schemes
where, at one time instance, a signal is transmitted from one
antenna and zeros from the others. For other employed or-
thogonal pilot schemes this approach still serves as a good
approximation. The respective covariance matrices are then
composed of the covariances

r(λ) = r(R)
αγ (λ) + r

(T )
βδ (λ) (24)

wherein λ = (k0−k1)·PS describes the time offset between
two observations and r

(T/R)
ab mirrors the partial correlation

from transmitter or receiver side. For independent PLLs at
the receiver the first summand and for independent transmit
circuits the second one disappears. Hence also the special
case of one common carrier synthesis for all antennas on
one side is part of this derivation if the covariances r(λ)
adopt the same value of full correlation. According to [2]
these covariances can be calculated from

r
(R/T )
ab (λ) =

1
2π

∫ π

−π

Sab(ω)ejωλdω (25)

The a and b herein represent some α, β respectively γ, δ
from above and Sab represents the common spectrum of the
respective noise processes.

The cross-covariances for the interpolated estimate at
time instance l for the sum-process of transmitter γ and re-
ceiver δ in

Cηϕγδ;l=
(
CT

η11ϕγδ;l
CT

η21ϕγδ;l
· · ·CT

ηNR1ϕγδ;l
CT

η12ϕγδ;l
· · ·

CT
ηNR2ϕγδ;l

· · ·CT
ηNRNT

ϕγδ;l

)T

(26)

can be similarly determined. The entries of the submatrices
arise to

pl(λ) = p
(R)
αγ;l(λ) + p

(T )
βδ;l(λ). (27)

The partial terms are also obtained by integrating the re-
spective overlapping components of their spectra with a and
b taken as α, β, γ, δ according to the above case distinctions

p
(R/T )
ab;l (λ) =

1
2π

∫ π

−π

Sab(ω)ejω λ
PS ejω l

P dω (28)

which is for independent circuits also zero if a �= m or
respectively b �= n. As described in [7] the mean square
error (MSE) of a LMMSE estimate is given by

Jmin = El{Jmin;l} = El{Cϕϕ − wT
l Cηϕ} (29)

where El is understood as the expectation with respect to l.
As p

(R/T )
ab;l and r

(R/T )
ab cannot be evaluated analytically with

reasonable effort the covariance matrices have been calcu-
lated with help of a computer and, thus, the MSE evaluation
is only semi-analytically.

The unknown channel phases from the channel matrix
H from (1) still reside in the measured phases ηmn;k. This
unknown phase alters the actual phase model significantly
as the observations also comprise channel phases that break
up the correlations:

ηmn;k = ϕmn;k + arg(hmn;k) + ñmn;k (30)

But this drawback can be circumvented if initial estimates
of all sum-processes e.g. from the conventional LMMSE
estimators are subtracted from the phase in (14):

η′
mn;λ = ηmn;λ − ϕ̂mn;0 (31)

and this subtracted offset ηmn;0 is added again to the es-
timate that is computed from the above η′

mn;λ afterwards.
Therefore the employed estimator is resumed by

ϕ̂mn;l = ϕ̂′
mn;l + ϕ̂mn;0 = wT

l · η′
λ + ϕ̂mn;0. (32)
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Fig. 2. MSE in dB vs. the number of antennas

4. RESULTS
This section discusses the behavior of the enhanced esti-
mator with respect to a MIMO scenario. The results are
restricted to the case of an equal number of transmit and
receive antennas although the theory holds for other con-
figurations. Phase noise according to the mask in Fig. 1
has been generated by filtering white gaussian noise in the
frequency domain using the overlap save technique. The re-
sulting PSD of the noise is also presented in the same figure.
As the filters are dimensioned for the design SNR = 25 dB,
the simulations operate at the same ratio. The phase obser-
vations have been unwrapped before the estimation in order
to avoid the phase ambiguity in 2π.

The required data rate is chosen to be Rb = 155.52Mbit
s

according to the STM-1 specification in the SDH standard.
Since for reasons of easy comparison symbol rate Rs =
Rb/Nt

kb
and system bandwidth remain constant i.e. the num-

ber of bits per Symbol depends on the number of trans-
mit antennas kb(NT ) = kb(1)

NT
. The pilot spacing is also

not adapted. Hence the conveyable information is deter-
mined by 2 conflicting effects: increasing NT makes, on
the one hand, more orthogonal pilots necessary which de-
creases the number of data symbols per transmission with
the factor PS−NT

PS
. On the other hand the number of trans-

mittable symbols at one time instance is increased by the
factor NT . From the point of view of the phase estimation
this is the best approach as bandwidth of the estimation is
held constant by equal pilot spacing and equal symbol du-
ration while from information theoretic point of view the
transinformation quickly decreases when NT gets close to
the pilot spacing PS .

Fig. 2 displays the resulting MSE in dB versus the num-
ber of antennas semi-analytically and simulated for different
pilot spacings: PS = 15 red line (semi-analytic) with as-
terisks (simulation), PS = 22 in green with diamonds and
PS = 30 in black with circles.

The simulations for 1 antenna systems represent the ref-
erence as they exactly indicate the performance for the sim-
ple LMMSE estimator (even if more than 1 antenna is ap-
plied) neglecting the spatial correlations [2]. That means
the pilot spacing for a 4 × 4 system can be enhanced from

15 to 30 without loss in the MSE if this introduced MIMO
LMMSE estimator is used instead. Alternatively, the dia-
gram presents that this new estimator achieves theoretically
more than 3 dB gain for all pilot spacings and NT = NR =
8 antennas compared to the former estimator although sim-
ulations show 1 dB gain less for low pilot spacings.

AWGN scaled by the observation interval F is addition-
ally displayed as dash-dotted line serving as a lower bound
for low pilot spacing while for higher pilot spacing alias-
ing plotted with dashed lines for the different pilot spacings
obviously dominates the estimation performance.

5. CONCLUSION
This paper provides an enhanced Wiener filtering scheme
for the estimation of phase noise in high SNR scenarios.
By exploiting the resulting spatial correlations of the phase
noise processes as seen from the receiver the estimation per-
formance in terms of the MSE of the phase estimates can be
determined semi-analytically and with simulations. Both
results show good conformance.

Beneath the correlations aliasing remains an important
issue as with multi-antenna systems the number of orthogo-
nal pilots is as high as the number of introduced data streams
which is upper bounded by the number of transmit antennas.

The additional effort for the enhanced estimator com-
pared to the simple SISO estimator is given by the number
of observations used (optimally NT ×NR). On the one hand
for each estimate of a sum-process a filter bank for each
observed sum-process is used: overall N2

T N2
R filter banks

are used but some filter outputs can be reused. But on the
other hand the sets of coefficients that need to be stored re-
main limited: the association of a filter bank to an observed
sum-process is just permuted for each sum-process to be es-
timated. Thus with the advance in processing speed of new
hardware the additional complexity will be easy to handle.
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