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ABSTRACT
Interleaving is a key component of many digital

communication systems involving error correction

schemes. It provides a form of time diversity to

guard against bursts of errors. Recently, interleavers

have become an even more integral part of the code

design itself, if we consider for example turbo and

turbo-like codes. In a non-cooperative context, such

as passive listening, it is a challenging problem to

estimate the interleaver parameters. In this paper

we propose an algorithm that allows us to estimate

the parameters of the interleaver at the output of a

binary symmetric channel and to locate the code-

words in the interleaved block. This gives us some

clues about the interleaving function used.

1. INTRODUCTION AND NOTATION

Error correcting codes are usually good at correct-

ing randomly distributed errors but generally of-

fer inferior performance when the errors occur in

bursts. For bursty errors, interleaving the coded

sequence is commonly used [1]. It distributes data

bits in a different order from the one in which they

are generated.

On the receiver side, the signal is demodulated,

frame synchronized and deinterleaved. After those

operations the receiver is able to decode the coded

sequence and to correct the transmission errors.

In a non-cooperative context, we need to blindly

estimate the different parameters of the interleaver

and the coding scheme in order to perform the re-

verse operations. In such a context, the intercepted

sequence may be severely corrupted (high bit er-

ror rate). In particular we are not able at that point

to take advantage of the coded gain. Therefore we

clearly understand the importance of developing a

method that is robust with respect to high bit error

rate. The method proposed in [2] deals with the

case of perfect transmission. [2] provides an inter-

esting way to estimate the size of the interleaver

block, the code rate and realize the blind synchro-

nization of the interleaver blocks. This detection

is based on linear algebra theory. The method is

developed in the case of perfect transmission (no

transmission errors). In this paper we develop an

algorithm, based on the same concept as in [2],

that blindly estimates the characteristics of the in-

terleaver from a block coded and interleaved bi-

nary sequence corrupted by a high bit error rate.

In the same way as in [2], we are able to iden-

tify the interleaver size, to synchronize the inter-

leaver blocks and to estimate the code rate. Fur-

thermore our algorithm allows us to estimate the

position of the codewords in the interleaved block.

The paper is organized as follows. In section 2,

we recall the principle of the method developed in

[2]. Our method is exposed in section 3. Finally

section 4 gives simulation results that show the ex-

cellent performance of our method.

1.1. Notation

A block encoder is defined by a full-rank generator

matrix G that transforms each block of kc infor-

mation bits into nc encoded bits (kc < nc). Rep-

resenting the ith information block and the ith en-

coded block by vectors bi and yi, we have: yi =
biG. yi is called a codeword. The ratio r = kc/nc

is called the code rate. The interleaver can be mod-

eled by a permutation matrix P of size SS where

S is called the interleaver size. This means that

the interleaver performs a permutation within each

block of S encoded bits. In almost all systems,

the interleaver size is a multiple of the size of the

codeword and we have: S = Nnc with N being

the number of codewords within the interleaved

block. The transmitted sequence X is composed

of M interleaved blocks. Let us denote by Z the

intercepted sequence of X. Z is a delayed replica

of X (by t0 bits) that has been passed through a

binary symmetric channel. Let us denote Pe the

error probability of the channel. Without loss of

generality we assume that the restitution delay t0
is smaller than the size S of the interleaver.
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2. LINEAR ALGEBRA TO ESTIMATE
INTERLEAVER CHARACTERISTICS

In this section, we assume that the channel intro-

duces no error (i.e. Pe = 0). Burel et al. [2]

propose to build a matrix H(na, d) by skipping the

first d bits of Z and then dividing the remaining

interleaved stream into M analysis blocks of an ar-

bitrary size na (M ≥ na). Those blocks form the

lines of H(na, d). They examine the behavior of

the ratio ρ(na, d) defined as :

ρ(na, d) =
rank(H(na, d))

na

(1)

for different values of na and d. They noticed that

∀d, ρ(na, d) is equal to 1, except when na is a mul-

tiple of the interleaver size. Indeed, in that particu-

lar case, some columns are linear combinations of

each other. As illustrated in figure 1, this prop-

erty is due to the redundancy introduced by the

code. Let us consider a redundant bit represented

by the shaded box in figure 1. This bit is a lin-

ear combination of other bits located in the same

block. If na = S, this relation is also satisfied for

the next line and thus for the whole column. Thus

the shaded column is a linear combination of other

columns. This is not the case whenever na �= αS.

This rank deficiency property of H(S, d) allows
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Fig. 1. Matrix H(na, d)

the authors to estimate S. Once the size of the in-

terleaver is estimated, the minimum of ρ(S, d) with

respect to d allows them to estimate t0. This can be

explained by the fact that the maximum of depen-

dent columns in H is obtained for d = t0. An

estimation of the code rate is given by the ratio be-

tween the number of dependent columns and the

estimated interleaver size.

As shown in [2], this method gives good results

for estimating the parameters of the interleaver. How-

ever in a passive listening context, the intercepted

sequence may be highly corrupted, which trans-

forms the H(S, d) matrix into a full rank matrix

and thus the previously algorithm can not be used.

In the following we propose an algorithm based

on similar concepts. It allows us to estimate those

parameters when the interleaved sequence is de-

layed and passed through a binary symmetric chan-
nel. Furthermore, our method is able to locate the

position of the bits belonging to the same code-

word in the interleaved block.

3. THE PROPOSED ALGORITHM

As in [2], the matrix H(na, d) is built from Z. The

basic idea of the method is to find ”almost depen-

dent columns” in H(na, d). This is realized us-

ing an adaptation of the well known Gauss Jordan

Elimination Through Pivoting algorithm [3]. We

now briefly remind this method adapted to the bi-

nary case. The goal of this algorithm is to con-

vert H(na, d) into a lower triangular matrix noted

L(na, d). At the end of the algorithm, the presence

of all-zero columns in L(na, d) indicates a rank de-

ficiency of H(na, d).
We start with the first column of matrix H , and

set i = 1.

1. If the i
th element of the i

th column is a zero, we

permute this column with the first column i
′ (i′ >

i) that has a one on its i
th element.

2. If there is no column that has a one on its i
th ele-

ment, we permute the i
th row with the first row i

′

(i′ > i) that has a one on its i
th element.

3. We add (modulo 2) this column to any column on

its left that has a one on its i
th row. This clears the

i
th row.

4. If we get a column with zero, it is a dependent

column.

5. We repeat the procedure with the next column

(i.e. set i = i + 1 and go back to 1.)

Thus, the Gauss Jordan Elimination Through

Pivoting is a linear application that can be written

as:

A1H(na, d)A2 = L(na, d). (2)

Since H(na, d) and L(na, d) are binary matrices,

A1 and A2 take their values in the binary field F2.

Matrix A1 reports all rows permutations performed

during the algorithm whereas matrix A2 reports all

column permutations and additions performed on

A1H(na, d) to obtain L(na, d).

3.1. Identification of the interleaver size and blind
synchronization

H(na, d) can be modeled as H(na, d) = H̃(na, d)
+E where H̃(na, d) is the error free matrix and E
contains all transmission errors.
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For na = αS, there exists many linear combi-

naisons of columns in H̃(na, d) and for each one,

we define a set of column positions

I
(na,d)
j = {i

(j)
1 , . . . , i(j)pj

}

such that:

C
H̃(na,d)

i
(j)
1

+ . . . + C
H̃(na,d)

i
(j)
pj

= 0. (3)

Where CH
i is the column i of the matrix H . Let

us also define Dna,d = {I
(na,d)
1 , . . . , I

(na,d)
Q(na,d)} a

basis of all sets I
(na,d)
j . Its cardinal Q(αS, d) is

non zero and its maximum is reached at d = t0.

For na �= αS, α ∈ N, the columns of H̃(na, d)
are all independent (see figure 1). Hence the cardi-

nal Q(na, d) of Dna,d is zero. Thus, the maximisa-

tion of Q(na, d) w.r.t (na, d) allows us to estimate

S and t0. In the following, we present a way to es-

timate the cardinal of Dna,d from H(na, d). This

is done by using the matrix L(na, d).
First of all, let Bi be the number of ones in

the lower part1 of column i in the matrix L(na, d).
Note that the sum modulo 2 of independent columns

gives an independent column. Thus for an indepen-

dent column i, Bi is Binomial distributed its mean

is: mB = 1
2

(⌊
MS
na

⌋
− na

)
.

For a fixed number of analyzed bits (i.e. M is

fixed), mB decreases when na increases. Let us

define φ(k) as:

φ(k) =
Bk

mB

(4)

For na �= αS, it is easily shown that:

∀k ∈ {1, . . . , na}, limM→∞φ(k)
P
−→ 1.

with
P
−→ meaning the convergence in probability.

Now for na = αS with α ∈ N, assuming that

there is no error on and over the main diagonal of

A1H(na, d), there is, for each element I
(na,d)
j of

DαS,d, one column of L(αS, d) at position kj ∈

I
(αS,d)
j such that :

lim
M→∞

φ(kj)
P
−→ 2− 2

�
pj

2 �∑
i=0

(
pj

2i

)
P 2i

e (1−Pe)
pj−2i

(5)

with Pe the probability of error of the binary sym-

metric channel and pj the cardinal of I
(αS,d)
j . And

1from row na+1 to the last row �MS

na
� of H(na, d), where

M is the number interleaver blocks in X.

for the other columns k ∈ I
(αS,d)
j , k �= kj , we

have:

lim
M→∞

φ(k)
P
−→ 1

Even with a finite M , the gap between these

two behaviors of φ(.) is significant as long as {pkj
}j

and Pe are not too large. The existence of this gap

allows us to estimate Q(na, d) :

Q̂(na, d) = Card({k ∈ {1, . . . , na}/φ(k) < β})

with β a well defined threshold. Simulations show

that it is quite easy to dissociate the two popula-

tions and the choice of the threshold does not have

a great influence on the performance of the algo-

rithm.

Furthermore an estimation of the code rate is

obtained by Q(Ŝ, t̂0)/Ŝ. As it will be explained

in the next section, we have another possibility to

check if we have correctly estimated the block syn-

chronization and code rate.

3.2. Position of the codewords within the inter-
leaved sequence.

In order to locate the bits belonging to the same

codeword on the interleaver block, we need to esti-

mate DS,t0 . For each column k of matrix L(S, t0)

satisfying φ(k) < β, we estimate one I
(S,t0)
j using

matrix A2 (see (2)). Indeed A2 represents transfor-

mations that are performed on columns of H(S, t0)

and we are able to identify the columns i
(k)
1 , . . . , i

(k)
pk

of H(S, t0) such that :

C
H(S,t0)

i
(k)
1

+ . . . + C
H(S,t0)

i
(k)
pk

= C
L(S,t0)
k

In other words, Î
(S,t0)
j = {i

(k)
1 , . . . , i

(k)
pk

} is an esti-

mator of one element of DS,t0 . It means that in one

interleaved block, bits at positions {i
(k)
1 , . . . , i

(k)
pk

}
are linearly dependent and therefore belong to the

same codeword.

Note that if the synchronization was wrong, we

would not be able to find to which codeword be-

longs the first or last bit of the block. This algo-

rithm may also be used to perform the blind frame

synchronization.

3.3. Algorithm improvement

The estimation D̂na,d of the basis Dna,d may not

be completed: we could miss some basis vectors.

However, another realization of H(na, d), may be

used to find the missing basis vectors. In order to

obtain this new matrix we simply permute the rows

of H(na, d), yielding a ”virtual new realization”
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of the transmission. By doing so, we can com-

plete our basis and build, iteration after iteration,

the whole map of the codewords in the interleaved

block. This procedure can also be applied to the

detection of the size of the interleaver. This allows

us to significantly improve performance of our al-

gorithm as shown in the next section.

4. SIMULATION RESULTS

Let us consider the (7, 4) Hamming block code and

a random interleaver of size S = 56. The restitu-

tion delay t0 over the binary symmetric channel is

set to 0. Matrix H(na, d) is built from 50000 in-

tercepted bits. For each simulation, 3000 Monte

Carlo Trials are run. The threshold β is fixed to

0.6. For each trial, the coded sequence and the in-

terleaver are randomly chosen.

Figure 2(a) presents the correct detection prob-

ability of the interleaver size versus the BER, as-

suming that t0 is known (i.e. d = t0). Figure 2(b)

presents the probability of correct detection of the

size of the interleaver obtained for a BER of 6%
and for different values of d. Each iteration cor-

responds to a new virtual realization of the inter-

cepted sequence Z (as explained in section 3.3).

We note that performance increases significantly

with the number of iterations. For this code and

β = 0.6, using (5), we can prove that our algo-

rithm fails asymptotically for Pe ≈ 0.1024. Figure

2(a)) shows clearly this limit.
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Fig. 2. Correct detection probability of S

We also note that the performance decreases

when |d| increases, but as we analyze the sequence

off line, it is possible to estimate the size of the in-

terleaver for different values of the offset d. How-

ever this increases the computational complexity.

We now illustrate the ability of our algorithm

to estimate the position of codewords in the in-

terleaved block. This ability is closely related to

the number of vectors found in the estimate ba-

sis D̂S,d. The more vectors we have in the basis,

the more codewords our algorithm is able to lo-

cate in the interleaved block. Figure 3(a) shows

the proportion of vectors found in the basis versus

the BER assuming na = αS and d = t0 for 1 to 5

iterations. For example, at BER of 2%, after 5 iter-

ations, we are able to find 84% of the basis D̂S,d.

Figure 3(b) shows the proportion of vectors in the
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Fig. 3. Proportion of vectors found in D̂S,d

basis D̂S,d versus d after 1, 5, 50 and 100 itera-

tions. We can see that we obtain a maximum for

d = t0, which allows us to estimate the delay t0.

Morever we can note again the benefit given by the

iterations. As shown by figure 3(a) the benefit is

much larger for the first 50 iterations than for the

next 50 iterations. Indeed with a BER of 6%, and

for d = 0, we have found 55% after 50 iterations,

72% after 100 iterations.

5. CONCLUSION

We have presented an algorithm based on linear al-

gebra properties which, from a delayed and cor-

rupted interleaved sequence of block coded bits,

allows us to blindly estimate the interleaver size, to

synchronize the interleaver blocks, to estimate the

code rate and to obtain a precise idea of the kind of

interleaver used.

This method exhibits excellent performance: at

BER of 8%, we are able to correctly estimate the

interleaver size in 76% of cases.
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