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ABSTRACT

Carrier frequency offset (CFO) estimation for orthogonal frequency
division multiplexing (OFDM) has caught attention as OFDM sys-
tems become widely adopted in recent years. In this paper, we design
a novel double differential codec with low computational complexity.
Our design bypasses CFO and channel estimation and is easy to be
implemented at both transmitter and receiver. It also guarantees full
multipath diversity, and reduces the peak-to-average power ratio from
the number of subcarriers to the channel order. In addition, it is robust
to CFO drifting. The closed form of the performance for our design
is derived for OFDM transmissions over frequency-selective channels
with CFO. Thorough simulation results corroborate our claims.

1. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) has been widely
adopted by wireless and wired communications (e.g., IEEE802.11a,
IEEE802.11g in the US, and DAB/DVB, HiperLAN/2 in Europe),
because it offers the possibility for high data-rates at low decoding
complexity [13]. Relying on multiple orthogonal subcarriers, OFDM
schemes turn the frequency-selective channel into a set of parallel flat-
fading subchannels. However, the presence of a carrier frequency
offset (CFO) destroys the orthogonality among subcarriers, and the
resulting intercarrier interference degrades the bit error rate (BER)
performance severely [9]. Thus, dealing with CFO is most critical
in OFDM systems and has received considerable attention in recent
years.

Different methods have been proposed to estimate CFO, e.g. the
training-based methods in [10], and the (semi-)blind methods in [7].
However, training-based methods sacrifice bandwidth efficiency on
transmitting pilot symbols and restrict the acquisition range to (a cou-
ple of) subcarrier spacing [10]. Null subcarrier based semi-blind meth-
ods can enlarge the acquisition range with higher complexity [7].

Scalar differential phase shift keying (DPSK) has well documented
merits; see e.g., [8]. Differentially encoded OFDM has been adopted
in the European DAB standard. Block differential schemes have been
designed to collect multipath diversity over frequency-selective chan-
nels using OFDM [4]. It is well-known that single differential can
only forego channel estimation but not CFO. Since single-differential
OFDM systems as in [4] are still sensitive to CFO, CFO estimation
based scalar differential design is proposed in [5]. However, the CFO
estimator of [5] is limited to one subcarrier spacing acquisition range
and it has high complexity while offering no multipath diversity.

Double differential (DD) has been recognized as an effective way
to deal with unknown CFO and channels (see e.g., [1, 11]). Scalar
DD has been used for OFDM [3] with an irreducible bit-error-rate
floor and without any diversity. Multiple symbol block DD is em-
ployed for multi-antenna OFDM systems [14] through time-varying
channels. It also requires high decoding complexity and does not en-
able any multipath diversity. In this paper, we propose a novel block
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double differential (BDD) scheme with low decoding complexity and
high performance. Our design bypasses the CFO and channel estima-
tion and is easy to be implemented at both transmitter and receiver. It
also guarantees full multipath diversity regardless of the CFO value
and channel nulls, and reduces the peak-to-average power ratio from
the number of subcarriers to the channel order. In addition, it is robust
to CFO drifting. The closed form of the performance for our design is
also derived for OFDM transmissions over frequency-selective chan-
nels with CFO.

Notation: Upper (lower) bold face letters indicate matrices (col-
umn vectors). Superscript (·)H denotes Hermitian, (·)T transpose,
and (·)∗ conjugate. The real and imaginary parts are denoted as �[·]
and �[·]; E[·] stands for expectation; diag[x] for a diagonal matrix
with x on its main diagonal; and A⊗B denotes the Kronecker prod-
uct of matrices A and B. For a vector, ‖ · ‖2 denotes the 2-norm. IN

denotes the N ×N identity matrix; and F N is the normalized N ×N
Fast Fourier Transform (FFT) matrix with its (m, n)th element being
N−1/2exp(−j2πmn/N).

2. SYSTEM MODEL

Consider OFDM transmissions with N subcarriers over an Lth-order
frequency-selective fading channel in the presence of unknown car-
rier frequency offset (CFO). The discrete-time equivalent impulse re-
sponse vector of the channel is h = [h0, . . . , hL]T . We define the
normalized CFO as ωo = 2πTsfo, where fo denotes the physical
frequency offset (in Hz), which could be due to Doppler and/or mis-
match between transmit-receive oscillators, and Ts is the sampling
period. The transmitted symbol at the nth time slot is s̃(n). In the
presence of CFO, the samples at the receive-antenna filter output can
be written as:

y(n) = ejωon
L∑

l=0

h(l)s̃(n − l) + v(n), (1)

where v(n) is zero-mean, white, complex Gaussian noise with vari-
ance N0.

As in traditional OFDM systems, we perform inverse fast Fourier
transform (IFFT) and cyclic prefix (CP) insertion operations at the
transmitter side. At the receiver, we subtract CP from the data to
remove the inter-block interference [13]. We choose that the number
of subcarriers N > L and the cyclic prefix length Lcp ≥ L. Without
loss of generality, we let Lcp = L. After CP removal, we can write
the matrix-vector counterpart of (1) for the kth OFDM block as [7]:

x(k)=ejωo(N+L)kDωoH̃F H
Ns(k)+w(k), ∀k ∈ [0, K−1], (2)

where the diagonal matrix Dωo := diag[ejωoL, . . . , ejωo(N+L−1)],
H̃ is an N×N circulant matrix with the first column [h(0), . . . , h(L),
0, . . . , 0]T , F H

N is a normalized N -point IFFT matrix, s(k) := [s(kN),
. . . , s((k + 1)N − 1)]T is an information-consisting block, w(k) is
the white Gaussian noise vector, and K is the number of blocks each
burst.

In Eq. (2), both the channel matrix and the CFO are unknown.
Our problem here is to recover the information symbols from x(k).
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Fig. 1. Block diagram for system model

In the absence of CFO (i.e., ωo = 0), we can perform FFT operation
at the receiver and then the channel matrix becomes

F NH̃F H
N = diag[h̃], (3)

where h̃ = [h̃(0), . . . , h̃(N−1)]T , with h̃(n) :=
∑L

l=0 h(l) exp(−j
2πln/N). In this case, if the channel is time invariant for at least two
consecutive blocks, a single differential design has been proposed in
[4] to bypass channel estimation and at the same time collect multi-
path diversity. Unlike [7, 5, 10], we estimate neither the channel nor
the CFO. Our method is to design a double differential scheme for
s(k), so that we can recover the information symbols without know-
ing or estimating CFO and channels. Following the system block
diagram in Fig. 1, we will introduce BDD encoder and decoders.

3. BLOCK DOUBLE DIFFERENTIAL ENCODER

Suppose the number of subcarriers satisfying N = (L + 1)P , where
P is an integer. The differential encoder is designed as follows:

uk = F P G(k)F H
P uk−1, and G(k) = C(k)G(k − 1), (4)

where F P denotes a normalized P -point FFT matrix, C(k) and G(k)
are P × P diagonal matrices with PSK symbols on the main diago-
nal, and C(k) contains the information to be transmitted. The initial
values are chosen such as:

u0 = u1 =
√

P [1 01×(P−1)]
T ; and G(1) = IP .

The kth transmitted OFDM block is designed as

s(k) = 1L+1 ⊗ uk ⇔ Ds(k) = IL+1 ⊗ diag[uk], (5)

where 1L+1 denotes a vector with all elements as one. Note that
here we do not design both differential steps as diagonal. However,
F H

P G(k)F P is still a unitary matrix, which means that it will not
cause any “blow-up” or “diminish” problem as time goes on. In the
following, we will show how this BDD design works for OFDM sys-
tems with unknown CFO.

The frequency channel response vector h̃ in (3) can be rewritten
as h̃ =

√
NF 0:Lh, where F 0:L is the first L + 1 columns of F N .

Based on (5), we prove that (see [6, Appendix A] for a proof):
√

NF H
NDs(k)F 0:L =

√
L + 1(F H

P uk) ⊗ IL+1. (6)

Plugging (5), (6) into (2), the input-output relationship becomes

x(k) = ejωo(N+L)k
√

L + 1Dωo

(
(F H

P uk) ⊗ IL+1

)
h + w(k).

Recalling the encoder structure in (4) and using the property that
(AC)⊗ (BD) = (A⊗B)(C ⊗D) with matched matrix sizes, we
have that

x(k) = ejωo(N+L)k
√

L + 1 (G(k) ⊗ IL+1) Dωo(
(F H

P uk−1) ⊗ IL+1

)
h + w(k), (7)

where we interchange matrices Dωo with G(k)⊗IL+1 because both
of them are diagonal matrices. In the absence of noise, we have the
recursive equation as:

x(k) = ejωo(N+L) (G(k) ⊗ IL+1) x(k − 1).

The information matrix C(k) can thus be estimated from

Dx(k)DH
x (k − 1) = (C(k) ⊗ IL+1) Dx(k − 1)DH

x (k − 2), (8)

where Dx(k) = diag[x(k)]. This enables the double-differential de-
sign to bypass both channel and CFO estimation for OFDM systems.
Eq. (8) provides a “heuristic” decoder for our BDD encoder in (4). In
the following, we will derive an optimal decoder, which turns out to
be equivalent to this “heuristic” decoder.

4. DOUBLE DIFFERENTIAL DECODER

In this section, we will derive the optimal decoder and the correspond-
ing performance analysis for the BDD design.

4.1. Decoder Design
Observing (8), we obtain that to estimate C(k), we need observations
x(k), x(k − 1), and x(k − 2). Define x̃(k) = [xT (k), xT (k −
1), xT (k − 2)]T and zk = ejωo(N+L)k

√
L + 1Dωo

(
(F H

P uk)⊗
IL+1) h [c.f. (7)]. It is ready to verify that

zk = ejωo(N+L) (G(k) ⊗ IL+1) zk−1.

The maximum likelihood (ML) estimator of C(k) is given as

Ĉ(k) = arg min
C∈V ,zk−1,ωo

‖x̃(k)−
⎡
⎣ ejωo(N+L)[CG(k − 1) ⊗ IL+1]

IN

e−jωo(N+L)[GH(k − 1) ⊗ IL+1]

⎤
⎦ zk−1

∥∥∥∥∥∥
2

2

. (9)

Note that this ML estimator is conditioned on zk−1, and ωo. We show
that (9) is equivalent to the following scalar decoder [6]:

ĉp(k) = arg max
cp∈V,ωo

L∑
l=0

|ejωo(N+L)gp(k − 1)cpx∗
p(L+1)+l(k)

+x∗
p(L+1)+l(k−1) + e−jωo(N+L)g∗

p(k−1)x∗
p(L+1)+l(k−2)|2, (10)

where gp(k) denotes the pth element on the main diagonal of the ma-
trix G(k), similarly, ĉp(k) is for Ĉ(k), and xp(k) stands for the pth
element of x(k). Note that in this scalar case, the cardinality of V is
only 2R(L+1), if the transmission rate is R bits per symbol.

However, based on the scalar detector in Eq. (10), we still cannot
perform ML estimation, because it depends on ωo, which is unknown.
In this case, we can use the “heuristic” decoder as the ones in [11, 1],
or similarly the one provided by (8). However, the question is whether
this “heuristic” decoder is optimal. Recently, [12] has answered this
question. It has been shown that the ML decoder in (10) is equiva-
lent to the following decoder which is a scalar counterpart of the one
provided by (8) (see [12, Appendix] for a proof):

ĉp(k) = arg max
cp∈V

L∑
l=0

�[cpx∗
p(L+1)+l(k)x2

p(L+1)+l(k−1)

x∗
p(L+1)+l(k−2)], ∀p∈ [0, P−1]. (11)

The decoding complexity in (11) is with the order of 2R(L+1). It does
not depend on the number of subcarriers.
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4.2. Performance Analysis
In Section 4.1, we derive (11) according to the standard ML decoding
procedure to show that the estimator in (11) is optimal. In the follow-
ing, we provide another way to derive the same estimator. This new
way will help us to analyze the performance of the decoder.

Define ũk := F H
P uk. From (4), we have ũk = G(k)ũk−1.

Starting from (7), we can write the scalar input-output relationship
for the (p(L + 1) + l)th element as:

xp(L+1)+l(k)=ejωo(N+L)gp(k)xp(L+1)+l(k−1)+w̃p(L+1)+l(l),(12)

where ũp(k) is the pth element of ũk, and w̃p(L+1)+l(l) =

wp(L+1)+l(l) − ejωo(N+L)gp(k)wp(L+1)+l(k − 1). Using (12), we
can verify that

xp(L+1)+l(k)x∗
p(L+1)+l(k − 1)

= cp(k)xp(L+1)+l(k−1)x∗
p(L+1)+l(k−2)+ηp(L+1)+l(k), (13)

where the equivalent noise at time-slot n = p(L + 1) + l is

ηn(k)=e−jωo(N+L)g∗
p(k − 1)x∗

n(k − 2)w̃n(k)

+ejωo(N+L)gp(k)xn(k−1)w̃∗
n(k−1)+w̃∗

n(k−1)w̃n(k).(14)

At high signal-to-noise ratio (SNR), ηn(k) is approximately Gaussian
distributed, because the high order noise terms as the last term in (14)
can be ignored [8]. The ML estimator based on (13) is the same as
the one in (10). In the following, we will use (13) to analyze the
performance of our system.

Note that wp(L+1)+l(k)’s are Gaussian distributed with zero mean
and they are statistically independent for different k, l, and p. If
E[gp(k)] = 0, then we can verify that

E[ηp(L+1)+l(k)] = 0, and

E[|ηp(L+1)+l(k)|2] = ((L + 1)|h(l)|2 + N0)4N0 + 4N2
0 .

In (13), we notice that cp(k) does not depend on the index l. In
other words, there are L + 1 observations for the same unknown.
Given one realization of frequency-selective channel, the symbol er-
ror rate (SER) of cp(k) drawn from 2R(L+1)-ary PSK constellation is
[8, p.270]

Pe(h) ≈ 2Q

⎛
⎝

√∑L
l=0 |h(l)|2

2N0
sin(π2−R(L+1))

⎞
⎠ . (15)

The average SER over the channel realizations is given as

PE =Eh[Pe(h)]≈ 2

∫ ∞

0

Q

(√
β

2N0
sin(π2−R(L+1))

)
p(β)dβ, (16)

where β =
∑L

l=0 |h(l)|2 and p(β) is the probability distribution
function (pdf) of β. When the channel taps are identically inde-
pendent distributed complex Gaussian with zero mean and variance
1/(L + 1), the pdf of β can be viewed as a X2-distribution with
2(L + 1) degrees of freedom. The closed form for the average SER
in (16) is given as [6]

PE ≈ Γ(L+3/2)(L+1)2L+1

√
πΓ(L+2)

⎛
⎝sin2

(
π2−R(L+1)

)
2N0

⎞
⎠
−(L+1)

, (17)

where Γ(x) =
∫ ∞
0

tx−1e−tdt. Eq. (17) shows that the diversity
order and the coding gain for the BDD design are:

Gd = L + 1,

and Gc =
sin2

(
π2−R(L+1)

)
2(L + 1)2

(
Γ(L + 3/2)√

π(L + 1)Γ(L + 2)

)−1/(L+1)

.(18)

Thus, we can see that as L increases, diversity increases while cod-
ing gain decreases. The Kronecker product operation in (5) essen-
tially corresponds to the repetition coding over flat-fading subchan-
nels to collect diversity. However, this operation reduces coding gain
or transmission efficiency. Improved schemes with large coding gains
will be one of the future topics. Some other properties of our BDD
scheme are summarized in the following remarks:

Remark 1: Just as single differential schemes are robust to slow chan-
nel time variation, our double differential scheme is robust to slow
CFO variation (drifting). Observing (11), we know that if the CFO
changes slow enough that it is approximately constant within three
OFDM blocks, the ML detector in (11) is still effective. This is an
advantage of double differential design which has not been addressed
in the literature.

Remark 2: The double differential design in (4) with PSK modula-
tion reduces the peak-to-average power ratio of OFDM systems from
N to L + 1 [6].

5. SIMULATION RESULTS

In this section, we design some tests to demonstrate the performance
of the proposed BDD scheme. In all simulations except specially
mentioned, we adopt the system with carrier frequency fc = 5.2
GHz, sampling period Ts = 0.0625 µs, number of subcarriers N =
64, and thus the OFDM symbol period is 4 µs. The physical CFO is
chosen as 0.1% of the carrier frequency. Therefore, the normalized
CFO is ωo = 2πTsfo = 0.65π. Note that this is out of the acqui-
sition range of the CFO estimators in e.g., [5]. The SNR is defined
as symbol energy versus noise power ratio. The transmission rate is
R = 1 bit per symbol. The channel taps are independently generated
by complex Gaussian distribution with zero mean and variance satis-
fying the normalized exponential power delay profile. The number of
blocks is K = 10.

Test case 1 (multipath diversity): The purpose of this test is to sim-
ulate the performance of the BDD design and verify the performance
claim in Section 4. We compare the performance over flat fading
(L = 0) and two-path (L = 1) channels. The encoder used is in (4),
and the decoder is given in (11). When L = 0, the constellation V
is binary PSK, and when L = 1, the constellation V is quadrature
PSK. The average SERs are depicted in Figure 2. We observe that
the diversity order is indeed L + 1. When SNR is low (in our case
less than 12dB), the BDD design has better performance in flat fading
channels, mainly because Euclidean distance also plays an important
role to determine the performance. In the same figure, we also plot
the analytical result in (17). It has been shown that at high SNR, our
simulated result is quite consistent to the theoretical result.

Test case 2 (performance comparisons): In this test case, we will
compare our BDD with single differential (SD) OFDM (without any
CFO estimator) and with the method in [5]; i.e., a method using SD
encoder and decoder with a CFO estimator. To keep the same trans-
mission rate, we choose 5 blocks for one burst as in [5]. The CFO
estimator is given in [5, Eq. 18]. We plot average SER versus CFO
with fixed SNR. Observing Fig. 3, we notice that when SNR is 20dB,
our BDD is the best among three for any CFO. When CFO is ex-
tremely small ( e.g., ωo < 0.0025), SD without any CFO estimation
outperforms the one in [5], while within a certain range (approxi-
mately until ωo = π/64 ≈ 0.05), the method in [5] is better than
SD without CFO estimation. Because as ωo increases, periodically
(N + L)ωo becomes a multiple of 2π, SD’s performance is equiva-
lent to zero CFO case.

Test case 3 (CFO drifting robustness): As mentioned in Remark 1,
we expect that our BDD scheme is robust to CFO drifting relative to
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other training or blind methods. In this test case, we use simulation to
verify our claim.

The CFO drifting is modelled as a random process. Suppose the
CFO drifting is zero within each OFDM block. But from block to
block, it drifts randomly with a small step. Suppose the CFO at the
kth block is fo(k) Hz. For the (k + 1)st block, the CFO becomes

fo(k + 1) = fo(k) + ∆f(k),

where ∆f(k) is drawn uniformly from [−∆fmax, ∆fmax]. The per-
formance with different ∆fmax is given in Figure 4. Even with max-
imum CFO drifting 0.25 Hz pMHz, our double differential scheme
still works well. As CFO drifting further increases, our scheme per-
formance decreases slowly. As a comparison, we also perform the
method in [5] with ωo = 0.0141π = 0.45 subcarrier spacing. We
notice that even 0.05 Hz pMHz (0.1% subcarrier spacing) maximum
drift hurts the performance tremendously. This shows another unique
advantage of our BDD design.
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