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ABSTRACT

In this paper, we propose a novel subspace based approach for
blind carrier frequency offset estimation in OFDM. Correlation in
squared spectrum of the channel is exploited and low rank signal
model is thereby obtained without virtual subcarriers. The pro-
posed estimator accomplishes frequency synchronization with a sin-
gle OFDM block. No extensive time averaging is needed, which
makes the approach very attractive for time and frequency selec-
tive channels where the offset may be time varying. The method
is statistically very efficient since close to optimal performance is
achieved with respect to the Cramér-Rao bound with a single block.

1. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is a pow-
erful technique to handle impairments of wireless communication
media such as multipath propagation, with simplified receiver de-
sign. OFDM is a viable candidate for future 4G wireless commu-
nications standards. One of the main drawbacks of OFDM is its
high sensitivity to carrier frequency offsets (CFO) caused by the
oscillator inaccuracies and the Doppler shift due to mobility, giving
rise to inter-carrier interference (ICI). Therefore, frequency offset
estimation must be accomplished with high fidelity.

In this paper we derive the method for real constant modulus
modulation schemes, due to lack of space. Complex modulations
require some additional manipulations. The method is blind since
it does not require a priori knowledge of the transmitted data or the
channel. The proposed one-shot frequency offset estimator needs
only a single OFDM block to work with, unlike the majority of
blind techniques [1, 3, 6, 7, 8] which do almost always require ex-
tensive time averaging.

The key idea is exploit correlation among OFDM subcarriers
and more specifically in squared channel spectrum. Novelty of the
method relies on the fact that low rank signal model may be derived
without any virtual subcarriers. Existing subspace CFO estimation
methods for OFDM commonly require virtual subcarriers in order
to use the low rank signal model [2].

Performance comparison with the Cramér-Rao bound (CRB)
for the blind CFO estimation problem in OFDM [1] demonstrate the
high accuracy of the proposed method over broad range of signal-
to-noise ratios (SNR). CRB is almost reached with a single OFDM
block. Close to optimal performance is achieved compared to ex-
isting blind [2, 6, 7, 8], semi-blind [5] and even pilot-aided CFO
estimators [9].

The rest of the paper is organized as follows. The system model
is briefly described next. Frequency domain correlation in OFDM
is studied in Section 3. Then, Section 4 presents the blind CFO esti-
mation algorithm. Simulation results using realistic channel model
and different noise levels are presented in Section 5. Finally, Sec-
tion 6 concludes the paper.

2. SYSTEM MODEL

We use a general OFDM transmission model from [8]. Let a(k) =

[a0(k), . . . , aN−1(k)]T be the N × 1 symbol vector at time in-
stance k. We assume unit energy symbol constellations are used,
i.e. |ai(k)|2 = 1, i = 0, . . . , N − 1. The received OFDM N × 1
signal block in time domain after cyclic prefix removal, including
the frequency offset, is expressed as

z(k) = CεF
HDh̃(k)a(k) + w(k), (1)

where F =
{

1√
N

exp
(−j 2πkl

N

)}
k,l=0,...,N−1

is the N × N dis-

crete Fourier transform (DFT) matrix, H denotes the Hermitian
transpose and N is the total number of subcarriers. The diagonal
matrix Cε introduces the frequency offset and is defined as

Cε = exp

(
j
2πLε

N

)
·diag

{
1, . . . , exp

(
j
2π(N − 1)ε

N

)}
(2)

where L is the length of the cyclic prefix (L < N ). The length of
the whole OFDM block is P = N + L. The quantity ε ∈ [0, 1) is
referred to as normalized frequency offset (wrt. intercarrier spac-
ing). The diagonal matrix Dh̃(k) of size N × N in (1) contains
the channel frequency response h̃(k) = [h̃1, . . . , h̃N ]T at time in-
stance k on its main diagonal. The complex noise term w is as-
sumed to be zero-mean proper complex Gaussian. The signal and
noise processes are assumed to be mutually independent, and i.i.d.
over time.

Given an estimate µ of the true value ε, CFO compensation
may be performed at the receiver as

uµ(k) = FC∗
µz(k), (3)

where uµ is the N × 1 vector in frequency domain obtained after
compensation for the offset followed by DFT. The matrix Cµ has
the same structure as in (2) and ∗ denotes the complex conjugate.
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3. FREQUENCY DOMAIN CORRELATION

3.1. Correlation in channel frequency response

The channel is assumed to be block fading and to have a maximum
of Lh taps, hence it is frequency selective. The length of the cyclic
prefix is set as L ≥ Lh in order to avoid inter-block interference.
A key idea in OFDM transmission is the frequency correlation of
the channel among subcarriers induced by the DFT. Let h(k) be
the Lh × 1 channel impulse response in time domain correspond-
ing to the N × 1 channel frequency response vector h̃(k). Since
Lh < N , vectors h(k) and h̃(k) are related by an N point DFT
as h̃(k) =

√
NF{:,1:Lh}h(k), where the matrix F{:,1:Lh} is made

from the Lh first columns of the DFT matrix F. Recalling that the
Lh × 1 vector h(k) may be obtained from h̃(k) via Inverse Dis-
crete Fourier (IDFT) transform as h(k) = 1√

N
FH

{:,1:Lh}h̃(k), the
following relationship may be established:

h̃(k) = F{:,1:Lh}F
H
{:,1:Lh}h̃(k) = Ah̃(k), (4)

where the DFT/IDFT pair is denoted by A = F{:,1:Lh}F
H
{:,1:Lh}.

3.2. Correlation in channel squared spectrum

Since the DFT matrix F is full rank, the rank of F{:,1:Lh} is Lh,
and consequently rank

{
F{:,1:Lh}F

H
{:,1:Lh}

}
= Lh [10]. In the

following, we denote by � the element-wise Hadamard product
[10]. Multiplication in frequency domain corresponds to convolu-
tion in time-domain. Therefore h̃(k)� h̃(k) in frequency is related
via IDFT to h(k) ∗ h(k) in time, where ∗ denotes the convolution
product. Since there are 2Lh−1 degrees of freedom in h(k)∗h(k),
the dimension of the subspace associated to squared frequency re-
sponses h̃(k) � h̃(k) is 2Lh − 1. Then, let us state the following
theorem:

Theorem 1. Let x be a N × 1 vector such that x = Ax, where A
is a N ×N matrix of rank L < N . Then, the squared vector x�x
lies in the column space of A �A.

Proof is given in the Appendix. From (4), h̃(k) = Ah̃(k), and
according to the above theorem, the squared spectrum h̃(k)� h̃(k)
lies in the column space of A � A. Also, since the space of
squared channel spectrum is of dimension 2Lh − 1, we conclude
that rank {A � A} = 2Lh − 1.

Hence, because 2Lh − 1 < N in practice, low rank model
arises from correlation in channel squared spectrum and subspace
methods may be developed.

4. ONE-SHOT SUBSPACE BLIND CFO ESTIMATION

In the following, we introduce a blind CFO estimator which aims
at restoring correlation in channel squared frequency response. Un-
like the majority of blind CFO recovery techniques, the proposed
estimator needs only a single OFDM block to operate with (i.e. no
time averaging needs to be performed). Hence it allows finding
estimate for each block independently. This is obviously signif-
icant advantage in case of time-selective channels. Next, a brief
description of the proposed algorithm is provided in the case of real
symbol modulations. From now on, we drop the time index k, for
simplicity of the notation.

Let us consider the noise-free case in equations (1-3) and com-
pute the element-wise Hadamard product uµ � uµ as

uµ � uµ = (Mµ−εDh̃a) � (Mµ−εDh̃a) , (5)

where we defined Mµ−ε = FC∗
µCεF

H . In case of perfect fre-
quency synchronization, µ = ε and Mµ−ε = IN , where IN is the
N × N identity matrix. Then (5) becomes

uε � uε = (Dh̃a) � (Dh̃a) = h̃ � h̃, (6)

since Dh̃ is diagonal and a�a =
[
a2
0, . . . , a

2
N−1

]T
= [1, . . . , 1]T

under the assumption of unit energy real-valued modulations (ai ∈
{−1, 1}, i = 0, . . . , N − 1). Therefore uε � uε is equal to the
squared spectrum h̃ � h̃. Consequently, it inherits the same corre-
lation properties. Frequency mismatch (µ �= ε) leads to intercarrier
interference (ICI) and alters the components of uµ � uµ. Hence,
their correlation structure becomes different from the one of h̃� h̃.

This leads to the idea of restoring the correlation induced by
Fourier transforms in case of perfect synchronization. It is per-
formed by maximizing the projection of uµ � uµ in the subspace
spanned by h̃� h̃, or equivalently, by minimizing the projection in
the orthogonal subspace. Initial correlation is restored for µ = ε.
Since h̃� h̃ lies in the column space of A�A and the rank of the
latter is 2Lh−1 < N , subspace technique may then be constructed.
Note that virtual subcarriers (i.e. carriers carrying no data) are not
needed to ensure low rank model, which naturally arises from cor-
relation in channel spectrum.

Let us define the squared norm of the projection of uµ �uµ to
the orthogonal subspace of A� A as cost function C,

C (µ) =
∥∥∥Π⊥

A�A (uµ � uµ)
∥∥∥2

, (7)

where ‖ ‖2 is the squared Euclidean norm and Π⊥
A�A denotes the

projection matrix to subspace orthogonal to the columns of A�A.
As the matrix A depends only on the DFT size N and the channel
length Lh, it may be computed offline, as well as the projection
matrix Π⊥

A�A. The cost function C (µ) is periodic with period 1,
because replacing µ by µ + 1 only produces a shift by one of the
OFDM subcarriers, and therefore the correlation features remain
unchanged.

An estimate ε̂ of the CFO is found by minimizing the norm of
vector uµ � uµ in orthogonal subspace of A� A as

ε̂ = arg min
µ∈[0,1)

C (µ) . (8)

The spanned subspaces as well as the cost function to be minimized
are depicted in Figures 1 and 2, respectively. Numerical solution to
(8) may be found e.g. using a gradient descent method. Computa-
tional cost is not prohibitive due to a one dimensional search space
with unique minimum (see Fig. 2). Above results may be extended
to complex constant modulus constellations. Due to lack of space,
this will be presented in a forthcoming paper.

5. SIMULATIONS

In this section simulation results are reported. The OFDM system
parameters are chosen as follows: the carrier frequency is f0 = 2.4
GHz, the number of subcarriers is set to N = 64 and the available

III - 810

➡ ➡



uµ
� uµ
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Fig. 1. Subspaces used in proposed blind CFO estimation.
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Fig. 2. Cost function, real case.

bandwidth is B = 0.5 MHz. The length L of the cyclic prefix is 4.
Hence, the dimension of the subspace spanned by squared channel
spectrum is 7, i.e. rank {A �A} = 7. BPSK modulation is used.
Results are given first in the case of time-invariant frequency selec-
tive channel and constant carrier offset. Comparison is made with
the Cramér-Rao bound (CRB). Finally, simulations are reported for
both time-varying channel and offset.

5.1. Time-invariant frequency selective channels, constant CFO

The normalized frequency offset is set as ε = 0.43. The wire-
less channel is considered to be deterministic but unknown to the
receiver. That not only affects the transmission and the proposed al-
gorithm, but also the (CRB). The channel impulse response chosen
for our simulations has four transmission paths and is the following
4 × 1 vector:

h =

⎡
⎣ 0.0731 − 0.8702j

0.3613 − 0.4503j
−0.1098 + 0.4476j
−0.0270 − 0.0942j

⎤
⎦ .

Numerical gradient descent method was used to solve the mini-
mization problem in (8). Squared spectra before and after CFO cor-
rection are plotted in Figure 3 against the true one (i.e. with the true
channel frequency response and perfect synchronization). The pro-
posed algorithm restores correlation among subcarriers with high
fidelity, in both amplitude and phase, without any knowledge of
the frequency selective channel, under noise and severe frequency
mismatch conditions (SNR = 15 dB and ε = 0.43 in Fig. 3).

The Mean Square Error (MSE) is chosen as an error criterion
for carrier offset estimation:

MSE = E |ε̂ − ε|2. (9)
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Fig. 3. Squared spectrum, BPSK modulation case, SNR=15 dB and
ε = 0.43. Both (a) amplitude and (b) phase of squared spectrum
are restored with high fidelity, under noise and severe frequency
mismatch.
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Fig. 4. MSE and CRB vs. SNR, BPSK case, time-invariant fre-
quency selective channel, ε = 0.43 and single OFDM block. MSE
is 2.25 dB above from the CRB, hence close to optimal perfor-
mance is achieved with only one block.

Plot of the MSE versus SNR is depicted in Figure 4. Performance
is compared to the CRB derived in [1] for the blind CFO estima-
tion problem in OFDM. The MSE of the proposed CFO estimator
lies only 2.25 dB above from the CRB, which defines the small-
est achievable variance among the class of unbiased estimators.
Hence CRB is almost achieved, using only a single OFDM block.
Another remarkable property is that neither pilot nor virtual sub-
carriers are required [2], nor any time averaging over the received
blocks. These properties make the proposed method attractive for
estimating time-varying CFO in time and frequency selective chan-
nels. This case is studied next.

5.2. Time-frequency selective channels, time-varying CFO

Block fading is now assumed, i.e. the channel stays constant within
one OFDM block and varies from block to block. The wireless
channel is considered to have four independent paths (Lh = 4)
with unit variance Rayleigh i.i.d. distributed coefficients. The nor-
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malized frequency offset is assumed to be uniformly distributed in
[0, 1], and to vary block-wise.

Plot of the MSE versus SNR is depicted in Figure 5. Results
are ensemble averaged on 10000 different channel and CFO real-
izations. Highly accurate tracking of time-varying CFO is achieved
in time-frequency selective channels in a fully blind manner, for
broad-range of SNRs (0 ot 100 dB).
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Fig. 5. MSE of normalized offset vs. SNR, BPSK case, i.i.d.
Rayleigh block fading channel, uniformly distributed CFO in [0, 1]
and varying block-wise. Ensemble average (1000 blocks).

Performance is superior to existing blind [6, 8] or semi-blind
techniques [5]. Numerous blind frequency synchronization meth-
ods have been proposed in the literature related to OFDM, but most
of them need extensive time-averaging in order to get rid of the
influence of both noise and data symbols. Hence they cannot per-
form well in estimating accurately CFO with a single OFDM block
[6, 8]. Results are also comparable to pilot-aided CFO estimation
techniques such as in [9]. A high-resolution subspace technique
based on ESPRIT algorithm was proposed in [2], but requires vir-
tual subcarriers to employ low rank signal model. Virtual subcarri-
ers provide help especially for time and frequency synchronization
problems, but at the expense of bandwidth efficiency, since those
carriers do not carry any data. However, due to DFT and IDFT
operations, low rank model is feasible in OFDM transmission pro-
vided that the channel length Lh is such that 2Lh − 1 < N . This
is generally the case for a well designed OFDM system.

6. CONCLUSIONS

In this paper, we propose a novel subspace based algorithm for
blind carrier frequency offset estimation in OFDM. Exploiting cor-
relation in squared spectrum of the channel is is the key idea of the
method. Low rank signal model is obtained without virtual subcar-
riers. The proposed estimator performs frequency synchronization
with only one OFDM block. Hence, no extensive time averaging is
needed. Cramér-Rao bound is almost reached with a single OFDM
block. Close to optimal estimation of time-varying carrier offset in
time-frequency selective channels is achieved. Finally, the method
extends also to complex constant modulus symbol modulations.

7. APPENDIX

Proof of Theorem 1. Let x = [x1, . . . , xN ]T and let a1, . . . , aN

be the N×1 column vectors of A. Then, we exploit the relationship
x = Ax and express the squared vector x� x as

x� x = (Ax) � (Ax) (10)

=

⎛
⎝ N∑

k1=1

xk1 ak2

⎞
⎠ �

⎛
⎝ N∑

k2=1

xk2 ak2

⎞
⎠ (11)

=
N∑

k1=1

N∑
k2=1

xk1xk2 (ak1 � ak2) (12)

where (11) follows from (10) due to the distributivity of the Hadamard
product. Since rank {A} = L, there exist a basisB = {b1, . . . ,bL}
of vectors such that ai =

∑L
l=1 αilbl, αil ∈ C, i = 1, . . . , N .

We now prove that the vector x � x lies in the column space
of A � A, that is each vector term ak1 � ak2 in (12) lies in
span {A � A}. First, for k1 = k2 = k, the term ak � ak is by
definition the kth column of A � A, and obviously lies in its col-
umn space. Then, the Hadamard product ak1 �ak2 may be written
using the basis B as

ak1 � ak2 =

L∑
l1=1

L∑
l2=1

αk1l1αk2l2 (bl1 � bl2) . (13)

Finally for k1 �= k2, ak1 � ak2 is a linear combination of vectors
bl1 � bl2 , as it is also for each column ak � ak of A � A (see
(13)). Hence ak1 � ak2 lies in the same vector space.
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