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ABSTRACT

In this paper, we focus on the frequency offset esti-
mation for a MIMO system with OFDM transmission
technique. In our system, we directly approximate the
a posterior distribution employing the Gauss-Hermite
Integration in the preamble interval. Using this pro-
posed approach, a better frequency offset estimation
can be achieved in relatively large frequency offsets
compared to the extended Kalman filter based approach
over a quasi-static channel environment.

1. INTRODUCTION

To estimate unknown parameters through observations,
we need to compute the a posterior distribution. For
a linear dynamic model and linear observation, the
Kalman filter gives an optimal solution to estimate
them when the uncertainties is modeled as Gaussian.
However, when a part of the parameters are coupled
nonlinearly into observations, it is very difficult to com-
pute the a posterior density in the multi-dimensional
space. For this reason, the first-order nonlinear filter,
called the extended Kalman filter (EKF) has been pro-
posed and widely used [1]. However, since the accu-
racy of the EKF mainly depends on the stability of
the Jacobian matrix, the EKF may diverge with a nu-
merically unstable Jacobian matrix. For example, in a
large frequency offset, the EKF divergence may occur
more frequently. For this reason, more powerful non-
linear filters such as a Gaussian sum particle filter [2],
a particle EKF (PEKF) [3],[1], and unscented Kalman
filter (UKF) [4] have been proposed. The particle fil-
ter approximates the a posterior distribution as a set
of particles, where each of particles consists of hypoth-
esized state, and the corresponding weight. However,
particle filter based structures still require the Jacobian
matrix. The UKF performs in general worse than the
EKF. To eliminate the need of the Jacobian matrix,

we shall directly approximate the a posterior distribu-
tion using the Gauss-Hermite quadrature. With this
quadrature, we can efficiently compute the required a
posterior distribution [5]. The outline of this paper is
as follows. The system and channel models are pre-
sented in Section 2, then the proposed frequency offset
estimation algorithm is discussed in Section 3. Section
4 provides simulation parameters and results, and Sec-
tion 5 contains conclusions.

2. SIGNAL AND CHANNEL MODELS FOR
MIMO-OFDM SYSTEMS

In this paper, we consider a baseband model for a re-
ceived MIMO OFDM signal over a multipath fading
channel. The notation used for the MIMO-OFDM sys-
tem includes the following:

• Nf , Nt, Nr : number of multipaths and antennas
in transmitter and receiver.

• K, N−1 : number of subcarriers and OFDM data
symbols in one packet.

• Tg, Td
�
= KTs, Ts : guard time interval, OFDM

data symbol interval, and sampling time.

• Tp : preamble interval, Tp = MpTs.

• A, a, (A)l,m, (a)k : a matrix, a vector, the (l, m)
element of the matrix A, and the k-th element of
the vector a.

The symbols p, q,k,n are used as indices for the trans-
mit antenna, the receiver antenna, the subcarrier, and
the OFDM data symbol respectively. One packet is
composed of (N − 1) OFDM data symbols with one
preamble symbol which is made up of Mp subcarriers.
A guard time interval Tg is also included in each data
symbol to eliminate ISI. Input symbols {dp

k(n)} drive
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the p-th modulator (a K-point IFFT) which modulates
the symbols onto K subcarriers. The symbols dk(n)
are chosen from a complex-valued finite alphabet. For
convenience, the same signal constellation is employed
for all subcarriers and antennas, although the method
presented here can be extended to variable-rate con-
stellations. The n-th output of the p-th modulator is

sp(t) = sp
D(t)pD(t − Tp − Td − Tg − T g

d (n − 1)),

sp
D(t) =

1√
K

K−1∑
k=0

dp
k(n)ej2πk(t−Tp−Td−Tg−T g

d (n−1))/Td .

Here, pD(t) is a pulse with finite support on [0, Td), and
T g

d = Td + Tg. The channel between the p-th transmit
and q-th receive antenna, {fp,q

l (n)}, is modeled by a
tapped delay line (TDL) such that the n-th received
signal at the q-th antenna is

yq(t) =
Nt∑
p=1

Nf−1∑
l=0

fp,q
l (n)sp

D(t − lTs) + nq(t).

It is assumed in the sequel that

• Multipath delay spread : NfTs < Tg.

• Channel: a set of channels {fp,q
l (n)} is assumed

to be constant over one OFDM symbol duration
but varies from symbol to symbol.

• Receiver: receiver is assumed to be matched to
the transmitted pulse.

The additive noise nq(t) is circular white Gaussian with
spectral density 2N0. Having eliminated the guard in-
terval, the n-th OFDM data symbol vector in the time
domain is now given by

yq(n)
�
=

Nt∑
p=1

D̃p(n)fp,q(n) + zq(n), (1)

where

zq(n) ∼ N (zq(n);0, 2N0/TsIK),

fp,q(n)
�
=

[
fp,q
0 (n), fp,q

1 (n), . . . , fp,q
Nf−1(n)

]T

∈ CNf ,

D̃p(n)
�
=

⎡
⎢⎢⎢⎢⎣

d̃p
0(n) d̃p

K−1(n) . . . d̃p
K−Nf+1(n)

d̃p
1(n) d̃p

0(n) . . . d̃p
K−Nf+2(n)

...
... . . . . . .

d̃p
K−1(n) d̃p

K−2(n) . . . d̃p
K−Nf

(n)

⎤
⎥⎥⎥⎥⎦ ,

where D̃p(n) is a non-symmetric circulant matrix spec-
ified by cir({d̃p

k(n)}), and {d̃p
k(n)} = IFFT ({dp

k(n)}).

Here, N (x;mx, Σx) denotes a circular Gaussian den-
sity with mean vector mx and covariance matrix Σx.
Also, Ii

�
=Ii×j , i = j, denotes an i × j identity matrix.

With some discrepancies between the transmitter and
receiver, we assume that there is a frequency offset,
such that (1) is expressed as

yq(n)
�
= ∆(ε(n))

Nt∑
p=1

D̃p(n)fp,q(n) + zq(n). (2)

With the frequency offset ∆f(n), a normalized fre-

quency offset is defined as ε(n)
�
= ∆f(n)KTs, from

which a K × K matrix ∆(ε(n)) is defined as

∆(ε(n))
�
= diag{1, ej2πε(n)/K , . . . , ej2π(K−1)ε(n)/K}. (3)

Here, we assume that ∆(ε(n)) is independent of a re-
ceiver index. With this assumption, the received signal
from all receiver antennas is expressed as

y(n)
�
= ∆̃(ε(n))D̃(n)f(n) + n(n), (4)

where

y(n)
�
=[y1(n)

T
, . . . ,yNr (n)

T
]T ∈ CNrK ,

∆̃(ε(n))
�
=INr ⊗ ∆(ε(n)),D̃(n)

�
=INr×Nt ⊗ D̃1,Nt(n),

D̃1,Nt(n)
�
=

[
D̃1(n) . . . D̃Nt(n)

] ∈ CK×Nf Nt ,

f(n)
�
=[f1,1(n)T , . . . , fNt,1(n)T , . . . , fNt,Nr (n)T ]T ,

n(n) ∼ N (n(n);0, 2N0/TsINrK). (5)

In (5), ⊗ represents the Kronecker product.

3. NONLINEAR PARAMETER
ESTIMATION BASED ON THE

GAUSS-HERMITE INTEGRATION

In this section, we firstly review a numerical approx-
imate technique using the Gauss-Hermite quadrature
[5]. After then we directly apply it to the computation
of the a posterior distribution in the multi-dimensional
space.

3.1. Gauss-Hermite Integration

It is well known that the univariate integrals of the
following form can be approximated as [5]

∫ ∞

−∞
f(t)e−t2dt ≈

n∑
i=1

wif(ti), (6)

where wi = 2n−1n!
√

π
n2[Hn−1(ti)]2

, and ti is the i-th zero of the
Hermite polynomial Hn(t). That is, a function f(t) is
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approximated by a polynomial of degree of 2n−1. Also,
note that an approximation by the Gauss-Hermite in-
tegration (GH-I) works well when a function f(t) is
relatively smooth. The closeness of this approximation
improves with n [5]. Through the GH-I, the integral
is efficiently approximated by a set of finite points {ti}
and the function f(ti) at these points being multiplied
in the summation by the weights {wi}. For a Gaussian
random variable x(n) ∈ Rnx with a positive definite
covariance matrix Σ,2Σ = LLT , we have

∫
Rnx

f (x(n))N (x(n); x̂(n),Σ)dx(n)

≈
M1∑

i1=1

. . .

Mnx∑
inx=1

f(xi1,i2,...,iin (n))wi1,i2,...,inx (n),(7)

where

xi1,i2,...,lnx (n)
�
= x̂(n) + Lτ i1,i2,...,inx (n),

wi1,i2,...,inx (n)
�
=

1
πnx/2

wi1
M1

(n)wi2
M2

(n) . . . w
inx

Mnx
(n),

τ i1,i2,...,inx (n)
�
= [τ i1

M1
(n), τ i2

M2
(n), . . . , τ inx

Mnx
(n)]T .(8)

Using the Cholesky decomposition, we can express the
multivariate integration as a Cartesian product of an
univariate integration [6]. In (8), {τ ij

j (n), wij

j (n)} is a
set of abscissas and weights for an univariate GH-I in
the j-th dimension [6].

3.2. Frequency Offset Estimate for the MIMO-
OFDM System

To simplify our approach, we assume that the channel
vector is known exactly at the receiver and we use only
the preamble symbols to estimate the frequency offset.
The system model and observation equations are of the
form,

ε(n) = αεε(n − 1) + w(n),
y(n) = ∆̃ (ε(n)) D̃(n)f(n) + n(n),
w(n) ∼ N (w(n); 0, qε),
n(n) ∼ N (n(n);0, 2N0/TsINrK). (9)

Note that y(n) is nonlinear in terms of ε(n), which is
evolving through time according to the system equa-
tion. The constant αε ∈ R is assumed to be known
exactly. In the filtering process, the best estimate ε(n)

given a cumulative observation ỹn �
= {y(1), . . . ,y(n)}

is ε̂(n|n)
�
= E[ε(n)|ỹn]. To find this we need to compute

the density p(ε(n)|ỹn), which can be obtained from

p(ε(n)|ỹn−1)

=
∫
R

p(ε(n)|ε(n − 1))p(ε(n − 1)|ỹn−1)dε(n − 1),

p(ε(n)|ỹn) =
p(y(n)|ε(n))p(ε(n)|ỹn−1)∫

R p(y(n)|ε(n))p(ε(n)|ỹn−1)dε(n)
. (10)

When p(ε(n − 1)|ỹn−1) is approximate as Gaussian

p(ε(n − 1)|ỹn−1) ≈
N (ε(n − 1); ε̂(n − 1|n − 1), Pε(n − 1|n − 1)),

then the following density is an immediate result

p(ε(n)|ỹn−1) = N (ε(n); ε̂(n|n − 1), Pε(n|n − 1)), (11)

where

ε̂(n|n − 1)
�
=αεε̂(n − 1|n − 1),

Pε(n|n − 1)
�
=α2

εPε(n − 1|n − 1) + qε.

However, in the formulation of (10), the received sig-
nal vector y(n) is a nonlinear function of ε(n), such
that it is hard to compute p(ε(n)|ỹn). Thus, we pro-
pose a new numerical approximation technique to the
a posterior distribution using the GH-I. Now using the
GH-I, ε̂(n|n) and Pε(n|n) of p(ε(n)|ỹn) are respectively
computed as follows

ε̂(n|n) =

∫
R ε(n)p(y(n)|ε(n))p(ε(n)|ỹn−1)dε(n)∫

R p(y(n)|ε(n))p(ε(n)|ỹn−1)dε(n)
,

Pε(n|n) =

∫
R ε(n)2p(y(n)|ε(n))p(ε(n)|ỹn−1)dε(n)∫

R p(y(n)|ε(n))p(ε(n)|ỹn−1)dε(n)
−

ε̂(n|n)2. (12)

Denoting εi(n) and wi as the i-th zero of the Hermi-
tian polynomial and its corresponding weight, we can
readily approximate (12) according to

ε̂(n|n) = ε̂(n|n − 1) +
√

2Pε(n|n − 1)(a),
Pε(n|n) = 2Pε(n|n − 1) × (b − a2),

a
�
=

∑N
i=1 wiεi(n)f1(ε̃i(n))∑N

j=1 wjf1(ε̃j(n))
,

b
�
=

∑N
i=1 wiεi(n)2f1(ε̃i(n))∑N

j=1 wjf1(ε̃j(n))
. (13)

In (13), a function f1(ε(n)) is defined as

f1(ε(n))
�
=

1
(2πN0/Ts)KNr/2

e
− ||y(n)−∆̃(ε(n))D̃(n)f(n)||2

2N0/Ts

and ε̃i(n)
�
=ε̂(n|n−1)+

√
2Pε(n|n − 1)εi(n). With (13),

we can finally approximate p(ε(n)|ỹn) as

p(ε(n)|ỹn) ≈ N (ε(n); ε̂(n|n), Pε(n|n)). (14)
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4. SIMULATION RESULTS

The following parameters are used in the simulations.

• K = 64, Nt = Nr = 4, Np = 320,

• fp,q(n) = {0.749, 0.502, 0.3365, 0.2256, 0.1512},∀ p, q,

For a quasi-static channel, we assume that αε ≈ 1.0,
qε ≈ 0.0. For the QPSK subcarrier modulation, Figure
1 shows the absolute frequency offset estimation error
at different frequency offsets over a quasi-static chan-
nel. We assume that the channel is exactly known at
the receiver and apply the Gauss-Hermite filter only
in the preamble interval [7]. At a reasonable high fre-
quency offset error, the proposed scheme can work bet-
ter than the EKF at SNRs in the range (0, 16). How-
ever, the proposed scheme does not appear to have a
performance advantage over the EKF based approach
in relatively small frequency offset errors. For the OFDM
data symbol interval, N = 10, we use the MIMO-
OFDM data detector proposed by the authors [8], called
the QRD-M with M = 16. Figure 2 is the correspond-
ing BER curve with a different value of ε(n). It shows
that with the Gauss-Hermite filter, we can have 4 [dB]
gain at a 2 × 10−3 BER with ε(n) = 0.3. However,
at ε(n) = 0.1 two approaches have almost the same
performance. This is the expectation from Figure 1.

5. CONCLUSIONS

We propose a new frequency offset estimator for MIMO-
OFDM over an exactly known quasi-static channel. As
a nonlinear parameter estimator, we employ the Gauss-
Hermite filter. Simulation results show significant per-
formance improvements compared with the EKF based
approach in a relatively large frequency offset for the
uncoded MIMO-OFDM system.
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