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Abstract— In this paper, all the previously proposed digital
blind feedforward symbol timing estimators employing second-
order statistics are casted into a unified framework. The finite
sample mean-square error (MSE) expression for this class of
estimators is established. Simulation results are also presented to
corroborate the analytical results. It is found that the feedforward
conditional maximum likelihood (CML) estimator and the square
law nonlinearity (SLN) estimator with a properly designed pre-
filter perform the best and their performances coincide with
the asymptotic conditional Cramer-Rao bound (CCRB), which is
the performance lower bound for the class of estimators under
consideration.

I. INTRODUCTION

The problem of digital blind feedforward symbol timing es-
timation assumes recovery of the timing delay of the received
signal based on the oversampled and unsynchronized received
samples. Many algorithms were proposed in the literature
to solve this problem. They include the nonlinearity-based
estimators (square law [1], logarithmic [6], absolute value and
fourth order [7]), cyclostationary-based estimators [2], [3], [4],
a two samples per symbol ad-hoc estimator [8] and its modi-
fied version [9], feedforward conditional maximum likelihood
(CML) estimator [10] and the square law nonlinearity (SLN)
estimator with pre-filter [5].

With so many estimators, designed using different philoso-
phies and their performances analyzed independently under
different assumptions, one would wonder whether we can
have a general framework to analyze the performances of
these estimators so that a fair and easy comparison can be
made. This question was partially answered in [7], in which
a technique for evaluating the jitter performance of symbol
timing estimators employing a zero-memory, general type of
nonlinearity was presented. In this paper, we provide a more
thorough analysis by formulating all the blind feedforward
symbol timing estimators employing second-order statistics
(which include the estimators in [1], [2], [3], [4], [5], [8],
[9] and [10]) into a single estimation framework, and then by
deriving the finite sample mean-square error (MSE) expression
for this class of estimators. The MSE expression for any
individual estimator can be obtained from the general expres-
sion by setting suitable parameters. The analytical results are
compared with the computer simulation results, and it is found
that both sets of results match very well. Furthermore, it is

found that within the class of estimators employing second-
order statistics, the SLN estimator with a properly designed
pre-filter [5] and the feedforward CML estimator [10] perform
the best and their performances coincide with the conditional
Cramer-Rao bound (CCRB) [11], which is the performance
lower bound for the class of estimators under consideration.

II. UNIFIED FORMULATION FOR SYMBOL TIMING

ESTIMATORS EMPLOYING SECOND-ORDER STATISTICS

For linear modulations transmitted through AWGN chan-
nels, the oversampled received signal can be written as

r(n) � ejθo
√

Es/T
∑

i

dig(nTs− iT −εoT )+η(nTs) , (1)

where θo is the unknown phase offset; Es is the symbol en-
ergy; di stands for the zero-mean unit variance, independently
and identically distributed (i.i.d.) complex valued symbols
being transmitted; g(t) � gt(t) � gr(t) is the combined
response1 of the unit energy transmit filter gt(t) and the
receiving filter gr(t); T is the symbol period; Ts � T/Q with
Q being the oversampling ratio; εo ∈ [0, 1) is the unknown
symbol timing delay to be estimated and η(nTs) stands for the
samples of filtered noise. It is assumed that the noise samples
before receive filtering is complex-valued circularly distributed
white Gaussian with power density No.

In this paper, we consider the class of estimators taking the
following general form:

ε̂ = − 1
2π

arg

{
K−1∑
k=0

Λ(k)e−j2πk/K

}
, (2)

where Λ(k) = rHBkr with r � [r(0), r(1), ..., r(LoQ−1)]T

is the observation vector of length Lo symbols and Bk is a
fixed matrix of dimension LoQ × LoQ. Let us now consider
some special cases.

A. Cyclic correlation-based estimator

The cyclic correlation-based estimator [3] is given by

ε̂ = − 1
2π

arg

{
LoQ−τ−1∑

n=0

r∗(n)r(n + τ)e−jπτ/Qe−j2πn/Q

}
,

(3)

1Notation � stands for convolution.
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for Q ≥ 3 and some integer lag τ ≥ 0. Note that different
values of τ result in different previously proposed estimators
in the literature (τ = 0 corresponds to the estimators proposed
in [1] and [4], τ = Q corresponds to the estimator in [2]).

If we decompose the summation term in (3) into Q
polyphase components and define nu(k) � �(LoQ − τ − 1 −
k)/Q�, we can write the expression inside arg{ } as

Q−1∑
k=0

e−jπτ/Q

nu(k)∑
n=0

r∗(nQ + k)r(nQ + k + τ)

︸ ︷︷ ︸
ΛCC(k)

e−j2πk/Q.

(4)
Therefore, the cyclic correlation-based estimator takes the
form of (2) with K = Q. Expressing ΛCC(k) into matrix
form, we have ΛCC(k) = rHBCC

k r, where BCC
k is a

LoQ×LoQ matrix with its (nQ + k, nQ + k + τ)th element
(n = 0, 1, ..., nu(k)) equal to e−jπτ/Q and other elements
equal zero.

B. Lee’s estimator and the modified estimator

A two samples per symbol estimator was proposed by Lee in
[8]. Later, this estimator was modified to remove its asymptotic
bias [9]. The modified version of Lee’s estimator can be
written as

ε̂ = − 1
2π

arg
{

γ

LoQ−1∑
n=0

|r(n)|2ejnπ

+
LoQ−2∑

n=0

Re[r∗(n)r(n + 1)]ej(n−0.5)π
}

,

(5)

with Q = 2 and γ is a constant depending on the pulse shape
g(t). If g(t) is a raised cosine pulse with roll-off factor ρ,
then γ = 8 sin(πρ/2)/(ρπ(4 − ρ2)) [9]. The original Lee’s
estimator can be obtained by setting γ = 1. Now rewrite the
expression inside arg{ } of (5) as follows:

γ

Lo−1∑
n=0

|r(nQ)|2
︸ ︷︷ ︸

ΛLee(0)

+
Lo−1∑
n=0

Re[r∗(nQ)r(nQ + 1)]

︸ ︷︷ ︸
ΛLee(1)

e−jπ/2

+ γ

Lo−1∑
n=0

|r(nQ + 1)|2
︸ ︷︷ ︸

ΛLee(2)

e−jπ

+
Lo−2∑
n=0

Re[r∗(nQ + 1)r(nQ + 2)]

︸ ︷︷ ︸
ΛLee(3)

e−j3π/2.

(6)

Then the estimator in (5) can also be expressed in the form
of (2) with K = 4. With the fact that Re(x) = (x + x∗)/2
and expressing ΛLee(k) in matrix form, we have ΛLee(k) =

rHBLee
k r, where2 BLee

0 = γILo ⊗
[
1 0
0 0

]
, BLee

1 = ILo
⊗

2Notation ⊗ denotes the Kronecker product.

[
0 0.5

0.5 0

]
, BLee

2 = γILo
⊗

[
0 0
0 1

]
, and

BLee
3 =

⎡
⎢⎢⎣

0 01×2(Lo−1) 0

02(Lo−1)×1 ILo−1 ⊗
[

0 0.5
0.5 0

]
02(Lo−1)×1

0 01×2(Lo−1) 0

⎤
⎥⎥⎦ . (7)

C. Feedforward CML estimator

The feedforward symbol timing estimator based on the
conditional ML principle was proposed in [10]. Unfortunately,
the results in [10] cannot be directly applied here since the
original estimator was derived under the assumption that
the noise samples are independent of each other, but in the
signal model (1), the noise samples are correlated due to
the receiver filtering. However, since the correlations between
noise samples are related to the receiving filter (which is
known), we can whiten the filtered noise samples by pre-
multiplying the observation vector r with (ϕ−1/2)H , where
ϕ is the correlation matrix of the noise vector, with its
elements given by [ϕ]ij =

∫ ∞
−∞ g∗r (t)gr(t − (i − j)T/Q)dt,

and ϕ−1/2 denotes any square root of ϕ−1 (e.g., Cholesky
decomposition) such that ϕ−1/2(ϕ−1/2)H = ϕ−1. Then the
results of [10] can be applied readily to this transformed
observation vector (ϕ−1/2)Hr. Following this direction, it can
be shown that the feedforward CML symbol timing estimator
is given by

ε̂ = − 1
2π

arg

{
K−1∑
k=0

ΛCML(k)e−j2πk/K

}
, (8)

where K ≥ 3 and ΛCML(k) = rHBCML
k r with

BCML
k � ϕ−1Aε(AH

ε ϕ−1Aε)−1AH
ε ϕ−1

∣∣∣
ε=k/K

, (9)

Aε � [a−Lg (ε), a−Lg+1(ε), ..., aLo+Lg−1(ε)], (10)

ai(ε) � [g(−iT − εT ), g(Ts − iT − εT ), ...,

g((LoQ − 1)Ts − iT − εT )]T , (11)

and Lg denotes the number of symbols affected by the inter-
symbol interference (ISI) introduced by one side of g(t).

D. Estimators with pre-filter

In [5], a properly designed pre-filter was applied to the SLN
estimator and the modified Lee’s estimator to improve their
performances at medium and high SNRs. In general, the pre-
filtering technique can be applied to the general estimator (2).
In that case, the observation vector is composed of samples
from the output of pre-filter. That is, ΛPRE(k) = xHBkx with
x � [x(0), x(1), ..., x(LoQ−1)]T and x(n) � r(n)�h(n) is
the further filtered (apart from the receiver filtering) received
signal samples through the pre-filter h(n). If h(n) is of finite
length Lp, then x(n) =

∑Lp−1
v=0 h(v)r(n − v) and

x =

⎡
⎢⎢⎢⎣

h(Lp − 1) ... h(0)
h(Lp − 1) ... h(0)

. . . ...
. . .

h(Lp − 1) ... h(0)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
H

r̃ (12)
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where r̃ � [r(−Lp + 1), r(−Lp + 2), ..., r(LoQ − 1)]T .
Therefore, the general estimator with pre-filter takes the form:

ε̂ = − 1
2π

arg

{
K−1∑
k=0

ΛPRE(k)e−j2πk/K

}
, (13)

where ΛPRE(k) = r̃HHHBkHr̃ � r̃HBPRE
k r̃. For example,

for the cylic correlation-based estimator with pre-filter, we
have BPRE

k = HHBCC
k H.

Notice that, due to pre-filtering, although the observation
vector x is of length LoQ, the length of effective observation
r̃ (before pre-filtering) is LoQ + Lp − 1. Also, BPRE

k is of
dimension (LoQ + Lp − 1) × (LoQ + Lp − 1), rather than
(LoQ − 1) × (LoQ − 1). Of course, if there is no pre-filter
(i.e., h(n) = δ(n)), all the equations in this subsection would
reduce to that of the original estimator.

III. PERFORMANCE ANALYSIS

A. Performance bound

In [11], the asymptotic CCRB was introduced for symbol
timing estimation problem. The asymptotic CCRB is a lower
bound tighter than the modified Cramer-Rao bound (MCRB),
but still a valid lower bound on the variance of any consistent
estimator that is quadratic with respect to the received signal
(which is the class of estimators under consideration). How-
ever, the asymptotic CCRB in [11] was derived assuming white
Gaussian noise samples, therefore, the whitening technique
similar to that in Section II-C has to be applied in order to
include the effect of the receiving filter. Applying the results
of [11] to the whitened observation vector (ϕ−1/2)Hr, it can
be shown that for fixed εo,

CCRBas(εo) =
1

2tr(D̃H
εo

ΨεoD̃εo)

(
Es

No

)−1

(14)

where D̃ε � 1√
Q

dAε/dε and Ψε � ϕ−1 −
ϕ−1Aε(AH

ε ϕ−1Aε)−1AH
ε ϕ−1. Since the symbol timing

delay εo is assumed to be uniformly distributed in [0, 1), the
average asymptotic CCRB can be calculated by numerical
integration of (14).

B. MSE expression

In this section, we present the MSE expression for the
general estimator (2). The derivation procedures follow closely
to that in [10]. The only difference is that, the MSE expression
in [10] was derived under the assumption of white noise, while
in this paper, the correlation of noise has to be taken into
consideration. This can be easily done by modifying just a
few lines of the derivations in [10]. Due to space limitation,
only the results are presented. Interested readers can refer to
[10]. It can be shown that for a true timing delay εo, the MSE
of the general estimator (2) is given by

MSE(εo) � E[(ε̂ − εo)2] = −
(

1
2π

)2
Re(φ1) − φ2

Re(φ1) + φ2
, (15)

where

φ1 � ej4πεo

K−1∑
k1=0

K−1∑
k2=0

E[Λ(k1)Λ(k2)]e−j2πk1/Ke−j2πk2/K ,

(16)

φ2 �
K−1∑
k1=0

K−1∑
k2=0

E[Λ(k1)Λ∗(k2)]e−j2πk1/Kej2πk2/K . (17)

In the above equations,

E[Λ(k1)Λ(k2)] = tr[BT
k1

Rεo
]tr[BT

k2
Rεo

]

+tr[BT
k1

RεoB
T
k2

Rεo ] + c(k1, k2), (18)

E[Λ(k1)Λ∗(k2)] = tr[BT
k1

Rεo ]tr[Bk2Rεo ]

+tr[BT
k1

RεoBk2Rεo ] + c(k1, k2), (19)

where tr[.] denotes the trace of a matrix,

Rε � Es

T
Gε +

NoQ

T
ϕ, (20)

[Gε]ij �
∞∑

n=−∞
g∗(iT/Q − nT − εT )g(jT/Q − nT − εT ),

(21)

c(k1, k2) � E2
s

T 2
(m4 − 2)

×
∞∑

n=−∞
[an(εo)HBk1an(εo)][an(εo)HBk2an(εo)],

(22)

with an(εo) defined in (11), and m4 = E[|di|4] is the fourth
order moment of the transmitted symbols. As the symbol
timing delay εo is assumed to be uniformly distributed in
[0, 1), the average MSE is calculated by numerical integration
of (15).

IV. NUMERICAL EXAMPLES AND DISCUSSIONS

In this section, the general analytical MSE expression
presented in the last section will be plotted as a function
of Es/No for different estimators. The analytic results are
compared with the corresponding simulation results and the
asymptotic CCRB. All the results are generated assuming
i.i.d. QPSK data, Lo = 100, both gt(t) and gr(t) are square
root raised cosine pulses with ρ = 0.3, Lg = 3, and εo is
uniformly distributed in the range [0, 1). The carrier phase θo

is generated as a uniformly distributed random variable in the
range [−π, π), and assumed constant during each estimation.
Each simulation point is obtained by averaging 104 simulation
runs. The asymptotic CCRB is computed assuming Q =
2. In this paper, the results of the following representative
estimators are presented: 1) Modified Lee’s estimator [9], 2)
Feedforward CML estimator [10], 3) SLN estimator [1] and
4) SLN estimator with pre-filter [5] where the pre-filter being
used is h(n) = g(t) cos(2πt/T )|t=nT/Q for n = −5Q, ..., 5Q
(i.e., Lp = 10Q + 1) [5]. Notice that the first two estimators
assume an oversampling ratio Q = 2, while the last two
estimators assume an oversampling ratio Q = 4.

For the computation of BCML
k and CCRBas(εo), there is a

need to calculate ϕ−1. Unfortunately, numerical calculations
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show that, for the gr(t) under consideration, ϕ is not full rank
(at least to the accuracy of Matlab). A main reason for rank
deficiency is that, due to the nature of gr(t), when |i − j| is
large, the values of [ϕ]ij are very very small but not zero. A
way to get around this is to replace ϕ−1 by ϕ̄−1, where

[ϕ̄]ij =

{
[ϕ]ij if |i − j| < LϕQ

0 otherwise.
(23)

In this way, the matrix ϕ̄ can be made full rank, but at the
same time, significant part of the correlation between noise
samples can still be represented accurately. Since most of the
correlation induced by gr(t) is confined to a duration of a few
symbols, Lϕ = 4 is used for the rest of the paper. Notice that
the matrix ϕ in (20) need not to be replaced by ϕ̄ since no
inversion is required.

Fig. 1 shows the results for the modified Lee’s estimator and
the feedforward CML estimator. It can be seen that the ana-
lytical and simulation results match very well. Furthermore,
the feedforward CML estimator performs much better than
the modified Lee’s estimator at high Es/No and its perfor-
mance coincides with the asymptotic CCRB, meaning that
the feedforward CML estimator is the best (in terms of MSE
performance) within the class of symbol timing estimators
employing second-order statistics. Fig. 2 shows the results for
the SLN estimator with and without pre-filter. This figure also
shows that the simulation results match the analytical results
very well. Moreover, the figure shows that the application of a
properly designed pre-filter removes the estimation error floor
at high Es/No and makes the performance of the resultant
estimator reaches the asymptotic CCRB.

V. CONCLUSIONS

In this paper, all the previously proposed feedforward sym-
bol timing estimators employing second-order statistics were
formulated into a unified framework. The finite sample mean
square error (MSE) expression and the asymptotic conditional
Cramer-Rao bound (CCRB) for this class of estimators were
established. It was found that the analytical and simulation
results match very well. Furthermore, it was found that the
feedforward CML estimator [10] and the SLN estimator with
a properly designed pre-filter [5] perform the best and their
performances coincide with the asymptotic CCRB.
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