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ABSTRACT

In this paper, PEP (pairwise error probability) is derived for MIMO
systems in the presence of channel estimation error, where the
channel is estimated using training insertion and linear channel es-
timation. This training-based PEP expression is utilized to design
the training sequence and for optimal power allocation between
the training and data symbols. The loss of coding gain due to the
training is quantified at high SNR. It is shown that both the pro-
posed PEP-based and the existing capacity-based optimal training
approach of [1] reveal the same power allocation for constant mod-
ulus (CM) constellations. The performance of our optimal power
allocation scheme falls between the nonoptimized equal power al-
location and perfectly known channel cases, and converges to the
latter for larger data transmission intervals. Numerical and simula-
tion results are presented to justify the usefulness of our analytical
findings.

1. INTRODUCTION

With the increasing demand of high data rates, future wireless
communication systems need to combat multipath fading in a band-
width efficient manner. A widely used technique for this purpose
is multiple antennas in the receiver side with some kind of combin-
ing of the received signal. However, with the recent development
triggered by Telatar and Foschini [2, 3], placement of multiple an-
tennas at both the transmitter and the receiver side has become a
subject of intensive research due to the much higher capacity man-
ifested by spatial multiplexing and diversity gains.

To achieve the capacity in a MIMO-setup, Tarokh et al. [4]
introduced space-time trellis codes (STTC). In [5], the effect of
channel estimation error (CEE) on the performance of space-time
codes is investigated, where a generic channel estimate is modelled
as the actual fading coefficients perturbed by additive Gaussian
noise and an optimal detection rule that maximizes the a posteri-
ori probability in the presence of CEE is obtained. A PEP expres-
sion as a function of the correlation coefficient µ in the presence
of channel estimation error is obtained only for constant modulus
constellations, e.g., PSK. The key observation is that the code de-
sign criteria, namely, the rank and determinant criteria remain un-
changed. However, there exists a loss of coding gain attributed to
the imperfect knowledge of channel and furthermore, an error floor
results if µ does not approach to unity with the increase of SNR. In
[6], it is shown that there is no loss of diversity gain even when the
detection rule that is optimal with perfectly known channel coeffi-
cients is used just by replacing the channel coefficients with their
estimates. The variance of the channel estimate is assumed to be
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proportional to the noise variance in [6] to make analysis tractable.
Since no explicit training scheme is considered in [5] and [6], the
issue of optimal training design is not raised and accordingly the
derived PEP expressions are not explored for the design of train-
ing symbols or optimal power allocation between the training and
data symbols. Hassibi et al. [1] resorts to the maximization of
the lower bound of average training-based channel capacity to de-
sign the training scheme and determine the optimal allocation. Al-
though the mutual information between the transmitted input and
processed output as an optimality criterion provides important de-
sign guidelines, PEP (pairwise error probability) is a more prac-
tical measure of communication system performance. Thus, the
objective and the main contribution of this paper is the proposed
design of a training scheme for a MIMO system that minimizes
the PEP. In particular, a novel PEP expression is obtained when
the MMSE-based estimates are used in the decoding rule as if they
are the true channel. Our training-based PEP expression provides
the optimal choice of training symbols and more importantly op-
timal power allocation between the training and the data symbols.
Furthermore, the loss of coding gain at high SNR is also quanti-
fied.

The notation used throughout is as follows. Bold upper and
lower case letters denote matrices and vectors respectively. (·)T

(·)H and (·)∗ denote transpose, Hermitian transpose and conjugate
respectively, IL denotes identity matrices of size L, CN (0, σ2)
is the complex-normal zero-mean where the real and imaginary
components of each random entry are independent with variance
σ2/2, (q, r) element of matrix A is denoted by [A]q,r; E[·] and
tr(·) respectively denote statistical average, trace of a matrix; (·)o

is used to distinguish the optimal parameters. vec(A) denotes the
vector formed by stacking the columns of A on top of each other.

2. SYSTEM MODEL

We consider a MIMO system equipped with Nt transmit and Nr

receive antennas in a flat fading environment. The fading coef-
ficients from transmit antenna k to receive antenna i is denoted
as h(ki). We assume antennas are separated far enough to ensure
independent fading at each of the receiver antenna and therefore,
fading coefficients can be modelled as independent complex Gaus-
sian random variables of variance σ2

h, i.e., E{|h(ki)|2} = σ2
h. We

also assume that the coefficients remain constant for time period T ,
and change to a new realization in the next time period. The sym-
bol transmitted from antenna k at time l is denoted as y(lk)/

√
Nt

where y(lk) chosen from a finite constellation points is normalized
so that its average energy is unity and thus 1/Nt denotes the aver-
age energy of each of the symbols transmitted from each antenna.
The received value x(li) at receive antenna i and at time l is given
by
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x(li) =
1√
Nt

Nt∑
k=1

y(lk)h(ki) + w(li), (1)

where the additive noise w(li) at receive antenna i and time l is i.i.d
complex Gaussian noise with mean zero and variance σ2

w. Equa-
tion (1) can be written compactly in a matrix form as

X =
1√
Nt

YH + W, (2)

where [Y ∈ CT×Nt ]l,i = y(li), [X ∈ CT×Nr ]l,k = x(lk) and
[H ∈ CNt×Nr ]k,i = h(ki) for k = 1, · · · , Nt, i = 1, · · · , Nr

and l = 1, · · · , T . Note that SNR at each of received antennas is
η = σ2

h/σ2
w.

3. PROBLEM FORMULATION

To decode the data symbols in a frame, we assume that the receiver
first estimates the channel and then uses this estimated channel as
if it were the true channel. To facilitate the channel estimation for
a particular frame, the training matrix Yτ known to the receiver
is appended before the data matrix. Consequently, the received
matrix Xτ in the training phase is given by

Xτ =
στ√
Nt

YτH + Wτ , (3)

where σ2
τ is the total transmitted energy in each time slot of the

training phase from all the Nt transmit antennas with tr
(
YτY

H
τ

)
=

NtTτ . In the data transmission phase a data matrix Yδ is transmit-
ted over the rest Tδ := T − Tτ time samples and received matrix
Xδ is given by

Xδ =
σδ√
Nt

YδH + Wδ, (4)

where σ2
δ is the total transmitted energy in each time slot of the

data transmission phase with tr
(
E
[
YδY

H
δ

])
= NtTδ . The es-

timate Ĥ is obtained from (3) and used in (4) to decode Yδ . If
we assume that on an average, considering both the training and
the data transmission phases, the total transmitted energy at each
time slot is unity, the energy conservation gives us the following
constraint:

σ2
τTτ + σ2

δTδ = T. (5)

A power allocation ratio γ := σ2
τTτ/T ∈ (0, 1) indicates the

percentage of the total power employed for training. Clearly, the
performance of the receiver will depend on the quality of the chan-
nel estimate Ĥ and the power allocation ratio γ. With H̃ = H −
Ĥ the channel estimator MSE denoted as σ2

h̃
:= 1/(NrNt) ×

E[vec(H̃)vec(H̃)H] is a measure of the quality of the channel es-
timate and will depend on the training symbols in {Yτ} and the
training interval Tτ . Furthermore, due to the power budget con-
straint in (5), if we allocate too much power for training (i.e.,
γ ≈ 1), the channel estimates will be better but the detectabil-
ity of the data will be susceptible to noise due to weak data SNR.
On the other hand, too little power for training (i.e., γ ≈ 0 ) deteri-
orates the estimated channel quality, and results in poor detection
despite the high data SNR. Therefore, our objective is to derive the
PEP expressions in the presence of training and minimize the PEP
to obtain optimal training symbols and optimal power allocation.
Moreover, we will analyze the performance of training with equal
power allocation, i.e., σ2

τ = σ2
δ = 1, where γ = Tτ/T and also

training with optimal power allocation, i.e., γ = γo and compare
these with the performance of the perfect CSI case.

4. CHANNEL ESTIMATION AND DECODING RULES

LMMSE estimate of the channel H from (3) is given by

Ĥ =

√
Nt

στ

(
σ2

wNt

σ2
hσ2

τ

INt
+ Y

H
τ Yτ

)−1

Y
H
τ Xτ , (6)

and the estimation error variance is

σ2
h̃

:=
1

NrNt

E[vec(H̃)vec(H̃)H]

=
σ2

h

NrNt

tr

([
INt

+
σ2

τ
σ2

h

Ntσ2
w

Y
H
τ Yτ

]−1⊗
INr

)
. (7)

To express the decoding rules, let us rewrite (4) as

Xδ =
σδ√
Nt

YδĤ +
σδ√
Nt

YδH̃ + Wδ︸ ︷︷ ︸
Vδ

, (8)

where we have used H̃ := H−Ĥ and the term associated with the
estimation error due to noise at the training phase, and the noise at
the data phase are lumped together and denoted as the signal de-
pendent noise Vδ . Due to the orthogonality property of LMMSE
estimator, Ĥ and H̃ are uncorrelated and it can be shown that for
a given Yδ , Vδ is Gaussian and independent to YδĤ. [Xδ]l,i can
be written as

x
(li)
δ =

σδ√
Nt

Nt∑
k=1

y
(lk)
δ ĥ(ki) +

σδ√
Nt

Nt∑
k=1

y
(lk)
δ h̃(ki) + w

(li)
δ︸ ︷︷ ︸

v
(li)
δ

,

where σ
2(l)
v := E[|v(li)

δ |2] = (σ2
δ/Nt)

∑Nt

k=1 |y(lk)
δ |2σ2

h̃
+ σ2

w ,

ĥ(ki) := [Ĥ]k,i and h̃(ki) := [H̃]k,i for k = 1, · · · , Nt, i =

1, · · · , Nr and l = 1, · · · , Tδ . In decoding y
(lk)
δ , we have at least

two options. One option is to minimize
Tδ∑
l=1

Nr∑
i=1

∣∣∣∣∣x(li)
δ − σδ√

Nt

Nt∑
k=1

y
(lk)
δ ĥ(ki)

∣∣∣∣∣
2

, (9)

with respect to y
(lk)
δ . Note that (9) is the ML receiver when ĥ(ki) =

h(ki). However, in the presence of CEE, (9) is not optimal and the
ML estimator of y

(lk)
δ minimizes

Tδ∑
l=1

Nr∑
i=1

⎡
⎢⎣
∣∣∣x(li)

δ − σδ√
Nt

∑Nt

k=1 y
(lk)
δ ĥ(ki)

∣∣∣2
σ

2(l)
v

+ ln σ2(l)
v

⎤
⎥⎦ . (10)

Notice that decision rule in (10) will yield the same result as in (9),
if y

(lk)
δ has constant modulus entries ∀k, l. Therefore, in general,

receivers that assume the channel estimate after training to be per-
fect are suboptimal. However, these are employed in practice due
to the simplicity of the decoding rule. Hence, we will focus on (9)
throughout our analysis.

5. PEP WITH CHANNEL ESTIMATION ERROR
We will evaluate the PEP when the decision rule in (9) is used. The
PEP is the probability of decoding the code matrix Y

′
δ erroneously

while Yδ was transmitted and can be expressed as

P (Yδ → Y
′
δ|Ĥ)

=Q

⎛
⎜⎜⎝

∑Tδ

l=1

∑Nr

i=1

∣∣∣ σδ√
Nt

∑Nt

k=1(y
(lk)
δ

− y′(lk)
δ

)ĥ(ki)
∣∣∣2√∑Tδ

l=1

∑Nr

i=1 2σ
2(l)
v

∣∣∣ σδ√
Nt

∑Nt

k=1(y
(lk)
δ

− y′(lk)
δ

)ĥ(ki)
∣∣∣2
⎞
⎟⎟⎠

≤Q

⎛
⎜⎜⎝
√√√√∑Tδ

l=1

∑Nr

i=1

σ2
δ

Nt

∣∣∣∑Nt

k=1(y
(lk)
δ

− y′(lk)
δ

)ĥ(ki)
∣∣∣2

2σ2
v

⎞
⎟⎟⎠ , (11)
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where the inequality in (11) is obtained by using

σ2
v := (σ2

δ/Nt)

Nt∑
k=1

νσ2
h̃

+ σ2
w = σ2

δνσ2
h̃

+ σ2
w ≥ σ2(l)

v ,

where ν := maxl,k |y(lk)
δ |2 ≥ 1. Notice that ν = 1 for con-

stant modulus constellations, e.g., PSK and the inequality in (11)
reduces to equality. The Chernoff bound on (11) gives us

P (Yδ → Y
′

δ
|Ĥ)

≤exp

⎛
⎜⎝−

σ
2
δ

Nt

∑Tδ

l=1

∑
Nr

i=1

∣∣∣∑Nt

k=1(y
(lk)
δ

− y′(lk)
δ

)ĥ(ki)
∣∣∣2

4(σ2
δ
σ2

h̃
ν + σ2

w
)

⎞
⎟⎠ (12)

=exp

(
− σ2

δ

4Nt

∑
Nr

i=1 ĥ
H

i
Aĥi

(σ2
δ
σ2

h̃
ν + σ2

w
)

)
=

Nr∏
i=1

exp

(
− σ2

δ
ĥ

H

i
Aĥi

4Nt(σ2
δ
σ2

h̃
ν + σ2

w
)

)
(13)

where ĥi is the i-th column of Ĥ and A := (Yδ − Y
′
δ)

H(Yδ −
Y

′
δ). With NA ≤ Nt number of non-zero eigenvalues {λm}NA

m=1
of A, the expectation of (13) over the channel realization gives us

P (Yδ → Y
′
δ)≤

⎛
⎜⎜⎝

NA∏
m

1

1 +
σ2

ĥ
σ2

δ
λm

4Nt(σ
2
h̃

σ2
δ

ν+σ2
w

)

⎞
⎟⎟⎠

Nr

≤

⎛
⎝NA∏

m

λm

⎞
⎠−Nr

⎛
⎜⎜⎜⎜⎜⎝

σ2
ĥ
σ2

δ

4Nt(σ
2
h̃
σ2

δν + σ2
w)︸ ︷︷ ︸

f(·)

⎞
⎟⎟⎟⎟⎟⎠

−NrNA

. (14)

When σ2
h̃

= 0, σ2
ĥ

= σ2
h and thus with σ2

δ = 1 and average SNR
per receive antenna η := σ2

h/σ2
w, (14) reduces to the perfect CSI

case given by

P (Yδ → Y
′
δ) ≤

(
NA∏
m

λm

)−Nr (
η

4Nt

)−NrNA

. (15)

Comparing (14) and (15), we observe that when channel MSE σ2
h̃

is proportional to the observed noise variance σ2
w, there is no loss

of diversity, but a loss of coding gain occurs due to the presence
of CEE. This conclusion is also drawn in [5] and [6], however,
no method is proposed to utilize the PEP expression to enhance
the performance. In the next sections we discuss how this loss of
coding gain can be minimized by the judicious choice to training
symbols and the power allocation between the training and the data
symbols.

6. PEP-BASED OPTIMAL Yτ

From (7) it is evident that the design of training matrix Yτ affects
σ2

h̃
. Furthermore, since for LMMSE estimator, σ2

ĥ
= σ2

h − σ2
h̃
, it

is evident from (14) that the decrease of estimator error variance
σ2

h̃
increases f(·) and thereby decreases PEP. Therefore, optimal

Yτ = Yτo that minimizes PEP can be obtained from

arg min
Yτ ,tr

(
Y

H
τ Yτ

)
=NtTτ

1

Nt

tr

([
INt

+
σ2

τ
σ2

h

Ntσ2
w

Y
H
τ Yτ

]−1
)

(16)

which results to Y
H
τoYτo = TτINt

, i.e., the columns of Yτo are
orthonormal with a multiplicative constant. The same conclusion
is drawn in [1] when the optimality criterion is based on the lower

bound of the average capacity. With the optimal choice of Yτ , (7)
becomes

σ2
h̃

=
Ntσ

2
wσ2

h

Ntσ2
w + σ2

hσ2
τTτ

, (17)

and Ĥ in (6) becomes

Ĥ = cH + U, (18)

where c := σ2
hσ2

τTτ/(σ2
wNt+σ2

hσ2
τTτ ) and [U]i,k ∼ CN (0, σ2

u)
with σ2

u = Ntσ
2
wσ4

hTτσ2
τ/(σ2

wNt + σ2
hσ2

τTτ )2. Notice that since
the total training power is dictated by σ2

τTτ , from (17) it is evident
by increasing the training power σ2

h̃
can be minimized. But due to

the total power constraint, it will decrease the data SNR and affect
the performance. The optimal power allocation derived in the next
section addresses this issue. Since we are estimating H, i.e., Nt ×
Nr unknowns, we need to have at least Nt × Nr measurements
and thus Tτ ≥ Nt would give us a meaningful estimate of H.
To maintain the maximum throughput, here we use Tτ = Nt and
σ2

τ = γT/Nt with optimal γ = γo. In fact it is shown in [1] that
when γ = γo, the choice Tτ = Nt maximizes the capacity. From
(18) we can write ĥ(ki) = ch(ki) + u(ki), and it can be shown that
for a given estimate ĥ(ki), h(ki) = cµσhĥ(ki)/σĥ + z(ki), where

µ :=
E[Real{h(ki)ĥ(ki)∗}]√
E[|h(ki)|2]E[|ĥ(ki)|2]

=
cσh

σĥ

,

and z(ki) ∼ CN (0, σ2
uσ2

h/σ2
ĥ
). Therefore, PEP expression in (14)

can be written in terms of µ, σ2
z and c and furthermore, with c = 1,

which is true for high SNR only, (14) becomes same as (13) in [5].

7. PEP-BASED OPTIMAL γ

We now pursue optimal power allocation γ = γo for given frame
length T (i.e., total average transmitted power is fixed to T ) with
optimal Yτ = Yτo. Replacing σ2

h̃
in f(·) by (17) and using σ2

ĥ
=

σ2
h − σ2

h̃
, σ2

τ = γT/Tτ and σ2
δ = (1− γ)T/Tδ we can write f(·)

in (14)

f(γ) =
σ2

hT

4Ntσ2
w(Tδ − Ntν)

· γ(1 − γ)

γ + b
, (19)

where

b :=
Nt(1 + ηνT

Tδ
)

ηT (1 − Ntν
Tδ

)
.

Optimal γ = γo can be obtained by differentiating f(γ) with re-
spect to γ. Considering the value of Ntν compared to Tδ we have
the following results.
Case-I: with Tδ = Ntν, we have

γo = arg max
γ

γ(1 − γ) = 1/2, (20)

f(γo) =

(
(ηT )2

(4Nt)2(Tδ + ηνT )

)
.

Case-II: Tδ > Ntν makes b > 0 and we have

γo = arg max
γ

γ(1 − γ)

γ + b
=
√

b(b + 1) − b, (21)

f(γo) =
ηT

4Nt(Tδ − Ntν)
(
√

b + 1 −
√

b)2.
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Case-III: Tδ < Ntν makes b < −1 and we have

γo = arg max
γ

γ(1 − γ)

−γ − b
= −b −

√
b(b + 1) (22)

f(γo) =
ηT

4Nt(Ntν − Tδ)
(
√−b −

√
−(b + 1))2.

High and Low SNR: At high SNR

γo =

√
Ntν√

Tδ +
√

Ntν
(23)

and at low SNR γo = 1/2.
Note that the PEP-based γo equals to the capacity-based [1] γo

with ν = 1.

8. LOSS OF PERFORMANCE AT HIGH SNR

It is appealing to quantify the loss of coding gain due to training at
high SNR. We have the following results.
With equal power training σ2

τ = σ2
δ = 1, i.e., γ = Tτ/T and

Tτ = Nt we have

P (Yδ → Y
′

δ
) ≤
⎛
⎝ NA∏

m=1

λm

⎞
⎠−Nr (

η

4Nt

· Nt

Nt + Ntν

)
−NrNA

. (24)

With optimal power training, i.e., γ = γo given by (23), we have

P (Yδ → Y
′

δ
) ≤
⎛
⎝ NA∏

m=1

λm

⎞
⎠−Nr (

η

4Nt

· Tδ + Nt

(
√

Tδ +
√

Ntν)2

)
−NrNA

.

(25)

When ν = 1, bounds in (24) and (25) are tight and it appears that
equal power training suffers from around 3dB loss as compared
to the perfect CSI case whereas the optimal power allocation per-
forms around 10 log[(

√
Tδ +

√
Nt)

2/(Tδ + Nt)]dB worse than
that of perfect CSI case. Therefore optimal power allocation per-
forms same as equal power when Tδ = Nt and better at higher Tδ .

9. NUMERICAL AND SIMULATION EXAMPLES

We consider a MIMO system with Nt = Nr = 2 and σ2
h = 1,

ν = 1, i.e., PSK constellations and Tτ = Nt. Optimal values of
γ are calculated from the expressions derived for different cases
depicted in Section 7 and shown in Table-I. It is observed that γ0

calculated using (23) for high SNR well-approximates the actual
values of γo even at low SNR, e.g., 5 dB. Therefore, lower values
of Tδ results higher γo, i.e., allocation of more power for training.
f(γ) in (19) vs. γ is plotted in Fig. 1(a) at 25dB SNR. We observe
that numerically f(γ) is maximum at γo obtained from our re-
spective derived expressions. Simulation results on training-based
transmission of 4-PSK using space-time trellis codes are shown in
Fig. 1(b). We have chosen the 4-state code for 2 transmitter and
2 receiver described in [4]. Training symbols are chosen so that
Y

H
τ Y = TτINt

where Tτ = Nt = 2, data transmission interval
Tδ = 128 and for optimal power allocation γo is chosen according
to (23). From Fig. 1(b), we observe about 1 dB loss for optimal
power allocation, whereas about 2.9 dB loss for equal power allo-
cation. From our derived expressions for PEP in Section 8 these
losses are predicted as around 1dB and 3dB respectively verifying
the accuracy of our derived expressions.

Table 1. Values of optimal γ in different scenarios
SNR γo: Case-I γo: Case-II γo:Case-III

(in dB) Tδ = 2 Tδ = 128 Tδ = 1
Eqn. (20) (23) (21) (23) (22) (23)

5 0.5 0.5 0.125 0.111 0.574 0.585
25 0.5 0.5 0.111 0.111 0.585 0.585
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Fig. 1. (a) f(γ) defined in (19) vs. γ, the power allocation ratio,
at 25dB SNR, (b) Performance of space-time trellis code (STTC)
for 4-PSK with 2 b/s/Hz in the presence of training scheme with
Nt = 2, Nr = 2.

10. CONCLUSION

We consider training design for a MIMO system that minimizes
PEP. Optimal training symbols and expressions for optimal power
allocation are obtained for different scenarios. It is observed that
for constant modulus constellations equal power training performs
3dB worse than the perfect CSI case whereas optimal power train-
ing performs in between, depending on the interval of data trans-
mission phase.
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