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ABSTRACT

We consider pilot-aided transmission (PAT) for a general class of
systems encompassing linear modulation and a linear time-varying
channel. For these systems, and given a pilot energy constraint,
we derive a tight lower bound on the mean squared error (MSE)
of pilot-aided channel estimates as well as necessary and sufficient
conditions on PAT to attain this bound. We then apply these results
to the design of single-antenna PAT for doubly selective channels
and arrive at novel MSE-optimal PAT schemes. In this application,
we assume a block-based cyclic-prefix PAT and a basis expansion
model for the channel.

1. INTRODUCTION

The wireless communication channel is typically modeled as lin-
ear transformation and parameterized by a set of time-varying co-
efficients. Often, the receiver estimates these coefficients for sub-
sequent use in data detection, so that high-quality channel esti-
mates are desired. In the pilot-aided approach to channel estima-
tion, a known pilot (or “training”) sequence is embedded in the
otherwise unknown transmitted sequence.

Tong, Sadler, and Dong published a recent overview of pilot-
aided transmission (PAT) [1]. They argued that the PAT design
problem can be separated into two sub-problems: pilot pattern de-
sign and pilot/data power allocation. In this work we target the
first subproblem, i.e., pilot pattern design given a fixed pilot power
allocation. Previous work on pilot pattern design (see, e.g., [1])
assumed a specific modulation type and either non-overlapping pi-
lot/data or persistent data with superimposed pilots.

We follow a different approach. First, we consider a general
linear modulation scheme (e.g., single-carrier, multicarrier, code-
multiplexed) with data and pilot patterns that may or may not over-
lap. Second, we consider a general linear time-varying channel
based on zero-mean random parameters with arbitrary correlation
structure. For this class of systems, and for a constraint on the pi-
lot power, we derive an expression for the minimum mean-squared
error (MSE) of pilot-aided channel estimates as well as necessary
and sufficient conditions on the pilot/data pattern to attain this
minimum MSE. Applying these conditions to the single-antenna
doubly-selective channel (DSC) using a basis expansion model
(BEM), we outline a procedure for MSE-optimal PAT design that
yields novel pilot/data patterns. We also uncover an inherent dual-
ity between time- and frequency-domain PAT systems.

It should be noted that several authors (e.g., [2–4]) have estab-
lished close connections between the capacity and MSE criteria
for pilot pattern design. Though these connections apply to our
work as well, these issues (as well as pilot/data power allocation)
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are treated elsewhere for reasons of space. The paper is organized
as follows. In Section II, we derive the MSE lower bound and
achievability conditions. In Section III, we apply these results to
the DSC. In Section IV, we conclude.

2. MSE-OPTIMAL PILOT-AIDED TRANSMISSION

In this section, we derive a lower bound on the MSE of pilot-
aided channel estimates assuming linear modulation, a linear time-
varying channel, and constrained pilot power. We also establish
necessary and sufficient conditions to achieve this bound.

2.1. System Model

For linear modulation and a linear time-varying channel, the re-
ceived complex-baseband vector y ∈ C

N can be written

y = T h + v (1)

where T ∈ C
N×G contains transmitted symbols, h ∈ C

G channel
coefficients, and v ∈ C

N zero-mean circular white Gaussian noise
(CWGN) with variance σ2

v . T is formed by superimposing pilots
S and unknown data X :

T = S + X . (2)

We assume zero-mean data, so that S = E{T }, and

h = Uλ, (3)

where λ ∈ C
M is zero-mean Gaussian with Rλ = E{λλH}

= diag(σ2
λ0

· · ·σ2
λM−1

) > 0 and U is fixed with UHU = IM .
Finally, we assume that v, X , and λ are uncorrelated.

2.2. MSE lower bound

Here we derive an MSE lower bound for estimation of h given
knowledge of {y, S}, statistical knowledge of {h, X , v}, and pi-
lot energy constraint ‖S‖2

F ≤ P ′. We begin by taking SVDs,
SU = V sΣsQ

H
s and XU = V xΣxQ

H
x , where Σs and Σx are

diagonal and full-rank. Let K ≤ M denote the rank of Σs. Defin-
ing z := V H

s y and using (3), we have

z = ΣsQ
H
s| {z }

As

λ + V
H
s V xΣxQ

H
x| {z }

Ax

λ + V
H
s v| {z }
n

. (4)

Since projection onto col(V s) does not attenuate the pilot compo-
nent of y, the pilot-aided MMSE channel estimate given {y, S} is
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equal to that given {z, S}. With Rz,λ := E{zλH} and Rz :=
E{zzH}, the MMSE estimate of λ given {z, S} is

λ̂ = R
H
z,λR

−1
z z, (5)

Rz,λ = AsRλ + E{Ax}| {z }
0

Rλ + E{nλ
H}| {z }

0

, (6)

Rz = AsRλA
H
s + σ2

vIK| {z }
∆

+E{AxRλA
H
x }| {z }

U xΛxU H
x

, (7)

with diagonal Λx ≥ 0 and UH
x U x = I . Note that the MMSE

estimate of h is ĥ = Uλ̂ and that σ2
e := E{‖h − ĥ‖2} =

E{‖λ − λ̂‖2}. The energy constraint on S implies

tr{(SU )H
SU} = tr(AH

s As) ≤ P, (8)

for some P , where the relationship of P to P ′ depends on the
structure of S and U . Given constraint (8), a tight lower bound on
σ2

e , as well as necessary and sufficient conditions to achieve this
bound, are stated in Theorem 1.

Theorem 1 (MSE Lower Bound).

σ2
e ≥

M−1X
m=0

„
1

σ2
λm

+
αopt

m

σ2
v

«−1

, (9)

αopt
m =

»
γ − σ2

v

σ2
λm

–+

, (10)

where [x]+ := max(0, x) and γ ∈ R satisfies

M−1X
m=0

»
γ − σ2

v

σ2
λm

–+

= P. (11)

Equality in (9) occurs if and only if (12)-(13) hold:

∀X , (SU )H
XU = 0. (12)

(SU )H
SU = diag(αopt

0 , ..., αopt
M−1). (13)

Proof. For the estimator (5) we have

σ2
e = tr{Rλ − R

H
z,λR

−1
z Rz,λ}

= tr{Rλ − R
H
λ A

H
s (∆ + U xΛxU

H
x )−1

AsRλ}
= tr{Rλ − R

H
λ A

H
s [∆−1 − ∆

−1
U x(Λ

−1
x

+ U
H
x ∆

−1
U x)

−1
U

H
x ∆

−1]AsRλ}, (14)

≥ tr{Rλ − R
H
λ A

H
s ∆

−1
AsRλ}, (15)

where we used the matrix inversion lemma in (14). The inequality
(15) follows since ∆ > 0 and Λx ≥ 0. Since Σs is full rank, As

has full row rank, and so equality in (15) is achieved if and only if

U xΛxU
H
x = 0 ⇔ E{AxRλA

H
x } = 0. (16)

Since Rλ > 0, (16) is satisfied if and only if Ax = 0, which is
equivalent to (12), since Σs and Σx are full rank square matrices.
We proceed further assuming that (12) is satisfied. With Ax = 0,

σ2
e = tr{Rλ − R

H
λ A

H
s (AsRλAs + σ2

vIK)−1
AsRλ},

= tr{(R−1
λ +

1

σ2
v

A
H
s As)

−1} (17)

using the matrix inversion lemma. Diagonal Rλ implies

σ2
e ≥

M−1X
m=0

„
1

σ2
λm

+
αm

σ2
v

«−1

, (18)

where αm = [AH
s As]m,m. Equality in (18) is achieved if and

only if AH
s As = (SU )HSU is diagonal. To find the lower

bound on MSE, we minimize the right hand side of (18) with re-
spect to {αm} given the constraints (8) and αm > 0 ∀m. The
method of Lagrange multipliers yields the optimal {αm} given by
(10)-(11).

The MSE-optimality condition (12) says that pilots and data
should be multiplexed in a way that preserves orthogonality at the
channel output. Condition (13) says that pilot signal should be
constructed so that the channel modes are independently excited
with energies specified by the water-filling expression (10).

Corollary 1. If Rλ = σ2
λIM , then αopt

m = P
M

∀m and

σ2
e ≥ M

„
1

σ2
λ

+
P

σ2
vM

«−1

, (19)

with equality if and only if (SU )HSU = P
M

IM and (12) holds.

3. PAT FOR THE DOUBLY SELECTIVE CHANNEL

Using results of Section 2.2, we now outline a procedure for de-
signing MSE-optimal pilot and data patterns for block transmis-
sion over single-antenna doubly-selective channels (DSCs) that fit
a basis expansion model (BEM). For these channels, we show an
inherent duality between time- and frequency-domain PAT.

3.1. Cyclic-Prefix Block Transmission Model

We assume that the output signal {y(n)} is related to the transmit
signal {t(n)} via

y(n) =

Nt−1X
�=0

h(n, �)t(n − �) + v(n), (20)

where {v(n)} is σ2
v-variance CWGN and {h(n, �)} is the time-n

channel response to an impulse applied at time n − �. The time
spread of the channel is Nt. Furthermore, we assume a length-
N block transmission {t(n)}N−1

n=0 prepended with a length Nt − 1
cyclic prefix (CP). By considering arbitrarily large N , the CP over-
head becomes insignificant. We form the received vector y :=
[y(0), . . . , y(N−1)]t by discarding the CP contribution. To fit the
model (1), we set T := [T 0 · · ·T −Nt+1] with
T −i := diag(t(−i), ..., t(−i + N − 1)), h := [ht

0 · · ·ht
Nt−1]

t

with hi := [h(0, i), . . . , h(N−1, i)]t, and v := [v(0), . . . , v(N−
1)]t.

The transmit signal {t(i)} is composed of pilot portion s(i) =
E{t(i)} and zero-mean data portion x(i) = t(i) − s(i). We em-
ploy a pilot power constraint of the form

1

N

N−1X
n=0

|s(n)|2 ≤ σ2
s . (21)

With Si := E{T i}, X i := T i−Si, S := [S0 · · · S−Nt+1], and
X := [X0 · · · X−Nt+1], we fit the model (2). In the sequel we
use s := [s(0), . . . , s(N − 1)]t and x := [x(0), . . . , x(N − 1)]t.
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3.2. Doubly-Selective Channel Model

The following BEM (see, e.g., [4]) characterizes the DSC response
over the block duration:

h(n, �) = N− 1
2

(Nf−1)/2X
k=−(Nf−1)/2

λ(k, �)ej 2π
N

kn, (22)

where n ∈ {0, . . . , N − 1} and � ∈ {0, . . . , Nt − 1}. In (22),
λ(k, �)’s are zero-mean uncorrelated Gaussian with variance N

Nf Nt
.

This model approximates wide-sense stationary uncorrelated scat-
tering (WSSUS) with uniform PSD

Shh(f) =

j
1

2NtfdTs
, |f | < fdTs,

0, |f | ≥ fdTs,
(23)

where fdTs is the one-sided Doppler spread normalized to the
symbol rate and where Nf := �2fdTsN�. We refer to Nf as
the frequency spread of the channel, and assumed it to be an odd
integer. Also, we assume 2fdTsNt < 1, so that the channel is
underspread.

Denoting the N -point unitary DFT matrix by F N , we rewrite
(22) as h� = F̄ λ� with F̄ := F ∗

N (:,−Nf−1

2
:

Nf−1

2
), h� :=

[h(0, �), . . . , h(N−1, �)]t, and λ� := [λ(−Nf−1

2
, �), . . . , λ(

Nf−1

2
, �)]t.

Notice that F̄
H

F̄ = INf
. If we define

U := INt ⊗ F̄

h := [ht
0 · · · ht

Nt−1]
t

λ := [λt
0 · · · λt

Nt−1]
t

9=
; (24)

then h = Uλ with UHU = INf Nt and Rλ = N
Nf Nt

INf Nt ,
which is compatible with the channel model in Section 2.1.

The transmitted pilot-power constraint (21) yields limits on the
received pilot-power as in (8). Since SU = [S0F̄ · · ·S−Nt+1F̄ ],
SH

−iS−i is diagonal, and all diagonal elements of F̄ F̄
H

equal
Nf

N
, we find

tr{(SU )H
SU} =

Nt−1X
i=0

tr{F̄ F̄
H

S
H
−iS−i}

=
Nf

N

Nt−1X
i=0

tr{SH
−iS−i} = NfNtσ

2
s .

Thus, to match (8), we set P = NfNtσ
2
s .

3.3. MSE-Optimal Cyclic-prefix PAT for the DSC

We now state the MSE-optimality requirements on pilot/data pat-
tern for the block-transmission model in Section 3.2 and the DSC
model in Section 3.1. We will use the index sets Nt := {−Nt +
1, ..., Nt − 1} and Nf := {−Nf + 1, ..., Nf − 1}.
Lemma 1. For N -block CP transmission over the doubly selec-
tive channel (22), the necessary and sufficient conditions for MSE-
optimal PAT can be written as follows. ∀k ∈ Nt, ∀m ∈ Nf ,

1

N

N−1X
i=0

s(i)s∗(i − k)e−j 2π
N

mi = σ2
sδ(k)δ(m) (25)

N−1X
i=0

x(i)s∗(i − k)e−j 2π
N

mi = 0. (26)

Proof. According to Corollary 1, we require

(SU )H
SU = σ2

sINf Nt (27)

and (12). Notice that (SU )HSU is composed of Nf ×Nf blocks
S̄k2,k1 := F̄

H
SH

−k2
S−k1 F̄ for k1, k2 ∈ {0, . . . , Nt − 1}. For

these k1, k2 and for m1, m2 ∈ {0, . . . , Nf − 1}, (27) becomes

[S̄k2,k1 ]m1,m2 = σ2
sδ(k1 − k2)δ(m1 − m2). (28)

The definitions of F̄ and S−i imply

[S̄k2,k1 ]m1,m2 =
1

N

N−1X
i=0

s(i − k1)s
∗(i − k2)e

−j 2π
N

(m1−m2)i

(29)

Setting k := k2 − k1 and m := m1 − m2, so that k ∈ Nt and
m ∈ Nf , (29) becomes

[S̄k2,k1 ]m1,m2 =
1

N

N−1−k1X
q=−k1

s(q)s∗(q − k)e−j 2π
N

m(q+k1),

=
e−j 2π

N
mk1

N

N−1X
q=0

s(q)s∗(q − k)e−j 2π
N

mq

(30)

where in (30) we exploited the fact that s(−q) = s(N − q) for
1 ≤ q < Nt. Combining (28) and (30), we obtain (25). The
equivalence of (12) and (26) can be shown similarly.

Using the quantities sf (i) := 1√
N

PN−1
q=0 s(q)ej 2π

N
qi and

xf (i) := 1√
N

PN−1
q=0 x(q)ej 2π

N
qi, Lemma 1 can be easily trans-

lated to the frequency domain.

Corollary 2. For N -block CP transmission over doubly-selective
channel (22), the necessary and sufficient conditions for MSE-
optimal PAT can be written as follows. ∀k ∈ Nt, ∀m ∈ Nf ,

1

N

N−1X
i=0

sf (i)s∗f (i − m)e−j 2π
N

ki = σ2
sδ(k)δ(m) (31)

N−1X
i=0

xf (i)s∗f (i − m)e−j 2π
N

ki = 0. (32)

3.4. Examples of MSE-Optimal PAT for the DSC

The pilot/data patterns specified by Lemma 1 are not unique. A
PAT design procedure is described in brief below, followed by sev-
eral examples including single-carrier cyclic prefix (SCCP) and
cyclic-prefix OFDM. For more details, see [5].

The “time-domain Kronecker delta” (TDKD) family of pilot
patterns follows from the choice s = b⊗ [1 0 · · · 0]t, for b ∈ C

L

such that L := N
Nt

∈ Z and

Nσ2
sδ(m) =

L−1X
i=0

|b(i)|2e−j 2π
L

mi ∀m ∈ Nf . (33)

If L < Nf , no solution to (33) exists. If Nf ≤ L < 2Nf ,
the elements in b must have equal magnitude. When L ≥ Nf ,
however, the design of b is less constrained. (See [5].) Another
family of pilot patterns—the “frequency-domain Kronecker delta”
(FDKD) family—results from setting sf = bf ⊗ [1 0 · · · 0]t with
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bf ∈ C
L′

and L′ := N
Nf

∈ Z. A third family of MSE-optimal
pilot patterns can be constructed from linear chirp sequences.

Given a pilot pattern, (26) imposes requirements on the MSE-
optimal data pattern. These can be rewritten as W x = 0 via

W k := F N(−Nf + 1 : Nf − 1, :)SH
k

W := [W t
−Nt+1 · · ·W t

Nt−1]
t.

In other words, data must be transmitted in the nullspace of W .
To do this, we construct x = Bd, where d contains Nd :=
dim(null(W )) data symbols and where the columns of B ∈ C

N×Nd

form an orthonormal basis for null(W ). SCCP follows naturally
from TDKD, whereas CP-OFDM follows naturally from FDKD.

It is possible to bound Nd for the DSC (22). Note that the
NfNt rows of (SU )H are contained within the (2Nf −1)(2Nt−
1) rows of W . In order to satisfy (27), those rows must be orthog-
onal. Thus, Nf Nt ≤ rank(W ) ≤ (2Nf − 1)(2Nt − 1), which
implies N − (2Nf − 1)(2Nt − 1) ≤ Nd ≤ N − NfNt.

The examples below specify various MSE-optimal PAT schemes
using their (s, B) parameterization.

Example 1 (SCCP with TDKD). Assuming N
Nf

∈ Z, define the

pilot index set P(i)

t and the guard index set G(i)

t :

P(i)

t := {i, i + N
Nf

, ..., i +
(Nf−1)N

Nf
} (34)

G(i)

t :=
[

k∈P(i)
t

{−Nt + 1 + k, ..., Nt − 1 + k}. (35)

An MSE-optimal PAT scheme is given by

s(q) =

(
σs

q
N
Nf

ejθ(q) q ∈ P(i)

t

0 q /∈ P(i)

t

(36)

and by B constructed from the columns of IN with indices not
in the set G(i)

t . Both i ∈ {0, . . . , N
Nf

− 1} and θ(q) ∈ R, are

arbitrary. Here, Nd = N − Nf (2Nt − 1).

Example 2 (CP-OFDM with FDKD). Assuming N
Nt

∈ Z, define

the pilot index set P(i)

f and the guard index set G(i)

f :

P(i)

f := {i, i + N
Nt

, ..., i + (Nt−1)N
Nt

} (37)

G(i)

f :=
[

k∈P(i)
f

{−Nf + 1 + k, ..., Nf − 1 + k} (38)

An MSE-optimal PAT scheme is given by

sf (q) =

(
σs

q
N
Nt

ejθ(q) q ∈ P(i)

f

0 q /∈ P(i)

f

(39)

and by B constructed from the columns of IN with indices not
in the set G(i)

f . Both i ∈ {0, . . . , N
Nt

− 1} and θ(q) ∈ R, are
arbitrary. Here, Nd = N − Nt(2Nf − 1).

Example 3 (Superimposed Chirps). Assuming even N , an MSE-
optimal PAT scheme is given by

s(q) = σse
j 2π

N

Nf
2

q2

(40)

[B]q,p =
1√
N

ej 2π
N

(p+Nf Nt)qej 2π
N

Nf
2

q2

, (41)

for q ∈ {0, . . . , N − 1} and p ∈ {0, . . . , Nd − 1}, where Nd =
N − 2Nf Nt + 1.

3.5. Discussion

A few comments are in order. The scheme in Example 1 was
shown to be MSE-optimal in [4]. To our knowledge, the scheme
in Example 2 is novel; the suggestion to cluster pilots in the fre-
quency domain was given by Stamoulis et al. [6], though details
were lacking. To our knowledge, the scheme in Example 3 is also
novel; a chirp-based training scheme was suggested in [7], but data
and pilots were transmitted in different frames. Note that, relative
to TDKD or FDKD, chirp systems may have advantages in peak-
to-average power ratio.

Though all three PAT examples above yield MSE-optimal chan-
nel estimates, they differ in the dimension of their data subspace
Nd. While a capacity analysis is outside the scope of this manuscript
(see [5] instead), it should be intuitively clear that larger Nd lead
to higher capacity. Notice that, among the three examples above,
FDKD yields the largest Nd when Nt > Nf > 1, while TDKD
yields the largest Nd when Nf > Nt > 1. At the moment it is not
clear, though, whether there exists an MSE-optimal PAT scheme
for the DSC with even higher Nd.

4. CONCLUSION

For a general class of systems encompassing linear modulation
and a linear time-varying channel, we derived a lower bound on
the MSE of pilot-based channel estimates assuming a pilot energy
constraint. In addition, we derived necessary and sufficient con-
ditions for PAT schemes to achieve this lower bound. Applying
these results to the case of single-antenna block-transmission over
a DSC, we gave three examples of MSE-optimal PAT schemes,
two of them novel. Our future work will strive to tighten the link
between PAT design based on MSE and capacity criteria using the
framework developed here.
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