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ABSTRACT

In mobile communications the movement of the users makes the

propagation channel to be time-varying. Algorithms that track

channel variations have to trade between complexity and accuracy.

Since the second-order statistic of time-varying channels is station-

ary, estimation of the channel can be reduced to track a set of un-

correlated parameters. Based on this decomposition, in this paper

we propose to simplify the optimum Kalman filter (KF) by track-

ing the channel modes separately and by using the steady-state

solution of the KF gain.

1. INTRODUCTION

In wireless communication systems the received signal in the

discrete-time model is compactly described as the linear system

= x h + (1)

at time vector h = [ (0) · · · ( 1)] C
×1 de-

notes the time-varying channel, the regressor x = [ 1 · · ·

+1] C
×1 contains transmitted symbols and is the

white Gaussian noise with E[| |2] = 2 . The optimal estimate

for the data sequence { } from the received signals { } is the

Maximum Likelihood Sequence Estimate (MLSE) routinely im-

plemented by the Viterbi Algorithm (VA). Sinceh is time-varying

and performances are very demanding, it is required to exploit the

benefits of the MLSE and optimal channel tracking. Joint MLSE

and tracking is known to be infeasible in real systems as its com-

putational complexity grows with the channel coherence time [1].

A practical solution consists in the Per Survivor Processing (PSP)

[2], that embeds data aided channel estimation techniques into the

VA. At each trellis step an independent channel tracking is accom-

plished for each survivor sequence. This permits to compute the

metric and update the survivors. With respect to VA, the PSP adds

the complexity due to the large number of channel estimators that

have to be carried out simultaneously. The KF is known to have

optimal channel tracking capabilities but it is infeasible to be im-

plemented in PSP. Therefore common goal is to implement sim-

plified algorithms still preserving the KF performance.

The dominating effort of the KF is the recursive update of a

time-varying gain vector. A constant gain is obtained in [3] by

introducing the assumption of uncorrelated channel taps and by

forcing the error correlation matrix to admit a steady-state station-

ary solution. In [4] tracking is decomposed into a set of KFs on

memoryless channel through an approximate prediction-feedback

mechanism. The Least Mean Square (LMS) algorithm replaces the

KF gain by the product between the regression term and a scalar

gain In the (Simplified) Wiener LMS (WLMS) [5][6] the scalar

gain is replaced by a linear filter optimized in the Minimum

Mean Square Error (MMSE) sense.

In this paper we propose to simplify the KF by taking advan-

tage of the modal structure of the channel vector h as in [7]. We

observe that in multipath propagation environments h is the su-

perposition of a large number of paths, that can be clustered into

few (say ) compound paths that are temporally resolvable.

Each compound path is characterized by a stationary delay (at

least for the time-scale of the transmission considered here) and

an amplitude that accounts for the time-varying fading (here as-

sumed to be Rayleigh distributed). In this case the channel vector

is h CN (0 R ) and it has rank-deficient covariance R with

= rank[R ] Accordingly, h can be decomposed into

the stationary modes of R and the corresponding uncorrelated

time-varying modal amplitudes. Using this property, the channel

estimation can be restricted to track this reduced set of uncorre-

lated modal amplitudes. The uncorrelation is not enough to sim-

plify the KF, but it motivates us to design a novel ad hoc algorithm.

A system model reparametrization, based on some reasonable hy-

pothesis on the transmitted signal, permits to exploit the channel

modes independence and decomposes the tracking to a set of par-

allel filters. The resulting algorithm, herein referred to as Simpli-

fied Kalman Filter (SKF), outperforms the other sub-optimal tech-

niques since it applies the exact KF recursion. The complexity

saving, in the order of LMS algorithm, is only due to the signal

reparametrization and the statistical properties of the modal am-

plitudes within the tracking.

The outline of the paper is as follows. In Sect. 2 the modal

structure of the channel is explained. In Sect. 3 and 4 we review

the KF and derive the SKF. The simulation results are shown in

Sect. 5. Finally Sect. 6 provides our conclusions.

2. MODAL STRUCTURE FOR THEMULTIPATH

CHANNEL VECTOR

According to the WSSUS multipath model the channel variabil-

ity is modelled as R ( ) = E[h h + ] = R ( ) (see [7] for

details). The temporal autocorrelation ( ) of each fading ampli-

tude depends on the Doppler frequency ( ) normalized to the

system bandwidth ( ) according to the Jakes function ( ) =
(2 ) (Clarke model [8]).

Under the rank- assumption for the matrixR , the latter can

be equivalently rewritten as R = U U , where the ×
matrix U and the × diagonal matrix collect, respectively,

the eigenvectors and eigenvalues of R . The channel can be

reparametrized accordingly in term of channel modesU as

h = Ub (2)
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where the modal amplitudes are b CN (0 ). From (2) it

follows that the modal amplitudesb have autocorrelation matrix

R ( ) = [b b + ] = ( ), they are therefore uncorrelated

and they preserve the same temporal correlation function ( ( ))
of the channel parameters h . Notice that since the delays are

constant over a large time scale, the basis U can be consistently

estimated from a sample covariance matrix R̂ calculated from

the channel estimates over several training sequences, see [7] for

details. In this paper we assume that the time-scale is large enough

to consider thatU and can be handled as known. In signal model

(1) the basis U can be grouped into the known regressor c =
x U so that

= c b + (3)

The transmitted symbols are assumed to be independent and iden-

tically distributed with E[| |2] = 2 , the entries of c are thus

uncorrelated and R =E[c c ] = 2I . We further assume that

the channel vector is normalized so that E[|h |2] = tr[R ] = 1,

the signal-to-noise ratio is defined as SNR = 2 2 .

3. KALMAN FILTER (KF)

When variations of the received signal can be modelled by a dy-

namic state model, the KF is known to be the linear MMSE es-

timator that approaches the lower bound on channel estimation if

the Gaussian assumptions hold true. In the following we intro-

duce some assumptions on the temporal variations of the channel

parameters and we briefly recall the KF algorithm for the channel

estimation from (3). A simplified version of the KF will be then

discussed in the following section.

For Kalman filtering the Clarke model of fading can be conve-

niently approximated as autoregressive (AR) models of finite order

[5]. Let the time-varying channel be modelled as first-order AR

(extension to higher orders is straightforward)

b = b 1 +w (4)

and the driving noise w CN (0 R ) is white. The

covarianceR is diagonal and collects a scaled amplitudes power

profile ( ). In KF the a-priori (bb | 1) and a-posteriori (bb | )
estimates of the modal amplitudes are obtained as:

bb | 1 = bb 1| 1 (5)

bb | = bb | 1 + k ( c bb | 1) (6)

where the time-varying KF gain vector is

k =
P | 1c

2 + c P | 1c
(7)

for P 1| 1 =
2(I k

1
c 1)P 1| 2

+ R Once de-

fined the error for the a-priori estimate eb | 1 = b bb | 1,

it is P | 1 = E[eb | 1
eb | 1] Basically the KF updates the

channel estimate (6) on the basis of the prediction error | 1 =

c bb | 1 and the gainK .

4. SIMPLIFIED KALMAN FILTER (SKF)

Although the dynamic state model (4) is decoupled, the KF esti-

mate errors are still correlated (i.e.,P | 1 is not diagonal) making

the gain updating (7) computationally expensive. We propose here

to reduce the tracking (6) to a set of parallel equations and avoid

the gain computation (7) by makingK time-unvarying.

Let the received signal be transformed by the regressor c

as c , since each realization c c can be decomposed in the

covariance matrix R and the zero mean deviation Z = c c
R the observation (3) can be equivalently written as

c = R b +Z b + c (8)

By adding and subtracting Z bb | 1 it is

g = c Z bb | 1 = R b +Z (b bb | 1) + c (9)

It is worth noticing that the a-priori estimate bb | 1 can be re-

garded as deterministic at -th step and it does not affect the signal

statistic. The term g in (9) consists in the scaled modal ampli-

tudes (R b = 2b ) and a noise term = Z (eb | 1) + c
(also referred as gradient noise in [5]). is composed of c

due to the AWGN and the term Z eb | 1 (or feedback noise [6])

that depends on the a-priori error eb | 1. When comparing (9)

with (3), it is quite clear that the regressor is made stationary (R

instead of c ) to the detriment of the noise ( instead of ).

Similarly to methods that derive analytical results of the track-

ing performance [5][9], here the gradient noise can be easily

analyzed when assuming as uncorrelated all the consecutive re-

gression vectors: E[c c + ] = 0 6= 0. Accordingly, entries of

matrixZ depend only on transmitted signals at time whereas the

a-priori estimate error eb | 1 is related only to the data up to time

1. Therefore Z is uncorrelated to eb | 1 so that can be

proved to be zero mean, white and uncorrelated with the parame-

ters b The covariance matrix R = E[ ] is the sum of

the AWGN and the feedback noise contributions:

R = 2 2
I +E[Z eb | 1

eb | 1Z ] (10)

When evaluating the expectations over eb | 1 and Z sep-

arately, the second term in (10) is E[Z P | 1Z ] =

E[c c P | 1c c ] R P | 1R and involves fourth order

moments of the regressors. For independent and circular Gaussian

distributed entries of c , it is [5]:

E[c c P | 1c c ] = 4 [ (P | 1)I +P | 1] (11)

The Gaussian assumption is here a practical solution to avoid the

exact computation of the symbol probability density function, that

depends on the basisU (a negligible improvement in performance

can be achieved when using the exact probability density func-

tion). Covariance (10) reduces to

R = ( 2 2 + (P | 1)
4)I (12)

The basic idea of the proposed simplified KF is to apply the

KF recursion to the signal g in (9) so that the modal amplitudes

estimate is updated by the prediction error here obtained by com-

paring the modified observation c Z bb | 1 with the desired

responseR bb | 1, or equivalently as

bb | = bb | 1 +K c ( c bb | 1)
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Algorithm AR-1 AR-2

LMS 2 + 1 2 + 1
WLMS 3 + 1 5 + 1
SKF/KFL 4 6
KF O( 3) O( 3)

Table 1. Complexity comparison in terms of complex multiplica-

tions for each step.

where the gainK is here an × matrix. The remainder equations

are easily obtained by applying the KF based on model (4) and (9):

bb | 1 = bb 1| 1 (13)

K = P | 1R (R +R P | 1R ) 1
(14)

P | 1 = 2(I K
1
R )P

1| 2
+R (15)

Recalling that R = 2I and R is diagonal, the matrices K

and P | 1 in (14) and (15) preserve a diagonal structure during

the iterations to yield to a set of decoupled KFs except for the

gain computation (14). Nevertheless it can be shown that the time-

invariance of the regression termR letsK converge to a station-

ary steady-state solution

lim K =K

This can be exploited to fully decouple the KFs and reduce the

complexity by pre-evaluatingK from (14) and (15). This yields to

the following constant gain algorithm here referred to as SKF

bb | 1 = bb 1| 1 (16)

bb | = bb | 1 +K · c | 1 (17)

The SKF structure recalls the method presented in [3] (here re-

ferred as KFL), where a constant gain K is obtained by forcing

the KF recursion to admit a stationary solution and by isolating

AWGN and coupling terms of the gain computation into a fac-

tor left as a free parameter. A practical solution to get decoupled

equations accounts only for the AWGN. Thus, when compared

with SKF, it follows that the KFL gain neglects the feedback noise

term in R . Such approximation is acceptable only for low SNR

( (P | 1)¿
2 2).

The WLMS algorithm [5] proposes a scalar gain 2 in-

stead ofK in (17) Although both the techniques are optimized in

MMSE sense, SKF outperforms WLMS since the former adapts

the gain to the amplitudes power profile while the latter is con-

strained to use the same scalar gain ( 2) for all the parameters.

5. PERFORMANCE EVALUATION

In this section the complexity and the performance of the SKF are

evaluated and compared with the other methods. The LMS is here

designed with = 1 , the other tracking techniques are optimized

by approximating the Clarke fading by AR models [5], where

the parameters are selected according to the normalized Doppler

frequency (here assumed as known). Table 1 shows the

computational cost (complex multiplication for step) of the LMS,

WLMS, SKF, KFL and KF for first (AR-1) and second (AR-2) or-

der AR channel models. Cost of the KF is prohibitive for practical

systems, thus motivating this research. Sub-optimal techniques re-

duces the complexity to O( ), the SKF has the same cost of KFL
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Fig. 1. Steady-state MSE versus SNR. Simulation for LMS, KFL,

WLMS, SKF and KF tracking over Clarke model channel ( = 8,

= 5, = [1 2 1 2 4 4 1 4 5] , 2 = 22 ).

since they share the same structure In the following simulation we

have considered AR-2 channel modelling to better approximate the

Clarke model ( )

We consider a channel length = 8 as composed by = 5
resolved Rayleigh-fading paths (i.e., = 5) having delays = [1
2 1 2 4 4 1 4 5] ( is the symbol time) and exponential power

delay profile 2 = 22 ( 2 is scaled to have E[|h |2] = 1).

The transmitted pulse is a raised cosine with roll-off 0 4. The max-

imum Doppler frequency is = 500 and the system band-

width = 200 The performance, in terms of the steady-

state = lim E[|eb | |
2], is plotted versus the SNR in

Fig. 1. It can be easily noticed that the SKF performance attains

closely that of the KF over the whole SNR range. Compared to

the LMS, the SKF provides a large performance improvement. At

low SNR the LMS estimate is embedded in noise, whereas at high

SNR the MSE slope presents a floor due to the lack of a-priori in-

formation on the dynamic model. The performance degradation is

particularly evident for large number of paths and large Doppler

frequency, thus making the LMS inadequate in tracking multipath

fast-varying channels. Despite of the more efficient structure, even

the KFL experiences an MSE floor. In this case the approxima-

tion done by neglecting the feedback noise covariance in the gain

computation is acceptable at low SNR, but affects considerably the

performance for 20 . The SKF yields also a constant

gain of approx. 2÷3 in SNR as compared with the WLMS. As

explained in Sect 4, the disadvantage of the WLMS is due to the

constraint to update all the modal amplitudes by the same scalar

gain regardless of their power profile. As a consequence, the dif-

ference between the SKF and the WLMS grows in a dense mul-

tipath environment ( large), when the fading amplitudes present

different orders of magnitude, and vanishes for single path channel

( = 1)

In the simulation displayed in Fig. 2 the channel is the super-

position of = 3 paths with = 5 = [1 1 8 2 1], exponential

power delay profile, = 700 and = 200 . The SKF
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Fig. 2. Steady-state MSE versus SNR. Simulations for LMS, KFL,

WLMS, SKF and KF tracking over Clarke model channel ( = 5,

= 3, = [1 1 8 2 1] , 2 = 22 ).

is still tight to the KF. The lower number of resolved paths ( = 3)
reduces the performance loss of the WLMS (as the power profile is

less dispersive) and of the KFL (as the contribution of the feedback

noise decreases).

Finally we analyze the data detection performance for chan-

nel tracking used in conjuction with a PSP receiver. Here the VA

metric at the -th step is evaluated by using the a-priori amplitude

estimate bb | 1 provided by the algorithm at the previous step [3].

The transmitted packets are composed by 150 symbols (300 bits

over 4-PSK modulation) followed by 1 known tail symbols.

The channel is the same as in the previous example and the CIR is

assumed known at the beginning of each packet (optimal training).

The SKF and the KFL precompute the optimum gain K, the KF

initializes the error covariance matrix P | 1 with the final value

of the previous packet in order to avoid the initial transient. Fig. 3

shows the bit error rate (BER) versus the SNR for the LMS, KFL,

WLMS, SKF, KF tracking and using known channel in VA. The

simulation results reveal that the SKF is well suited to be embed-

ded in the PSP receiver and provides performance comparable to

the KF. On the contrary the LMS is degraded by the absence of the

prediction bb | 1 so it has to approximate the metric by using the

outdated estimate bb 1| 1 This leads to a performance degrada-

tion in particular for fast-varying channel. At = 30 , the

SKF PSP provides a gain in SNR of approx. 1÷2 with respect

to KFL PSP, 4 to WLMS PSP and 7÷ 8 to LMS PSP.

6. CONCLUSIONS

The proposed SKF exploits a modal channel decomposition and

a proper signal reparametrization to obtain an efficient KF imple-

mentation. The method permits to decompose the channel esti-

mation problem into a set of parallel filters with constant gains,

these can be precomputed once given the dynamic models (and

the SNR). Analysis of the MSE over fast-varying channel shows

that the SKF introduce negligible degradation with respect to the
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Fig. 3. BER versus SNR for PSP receiver. Simulation for LMS,

KFL, WLMS, SKF, KF tracking and known channel. Channel as

in Fig. 2.

optimum KF and outperforms the other reduced-complexity tech-

niques. The estimation efficiency and the complexity reduction

make the SKF suited to be routinely used within the PSP receiver.
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