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ABSTRACT

In this paper we address the problem of channel equalization and
phase noise suppression in orthogonal frequency division multi-
plexing (OFDM) systems. For OFDM systems, random phase
noise introduced by the local oscillator causes two effects: the
common phase error (CPE), and the intercarrier interference (ICI).
The performance of coherent OFDM systems greatly depends on
the ability to accurately estimate the effective dynamic channel i.e.,
the combined effect of the CPE and the time-varying frequency
selective channel. The proposed approach uses a pilot tone aided
particle filter to track/estimate the effective dynamic channel in the
time domain and equalizes in the frequency domain. The particle
filter is efficiently implemented by combining sequential impor-
tance sampling, principles of Rao-Blackwellization, and strategies
stemming from the auxiliary particle filter. Simulation results are
provided to illustrate the effectiveness of the proposed algorithm.

1. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) has been ad-
opted in a number of applications. These include the digital audio
broadcasting (DAB), digital video broadcasting (DVB) standards,
and the wireless LAN standards, such as IEEE 802.11a, and Hiper-
LAN2. OFDM is also considered as a natural candidate for 4G cel-
lular systems and beyond, because of its efficient use of bandwidth,
ability to combat impulsive noise, and robustness against multipath
fading. However, OFDM systems suffer from some drawbacks as
well, and one is the increased sensitivity to random phase noise
(PN) that is introduced by the local oscillator.

PN in OFDM systems causes two effects. The first is a random
phase rotation that is common to all subcarriers, that is appropri-
ately referred to as the common phase error (CPE). The second is
the introduction of intercarrier interference (ICI), resulting from
the loss of orthogonality between each subcarrier. Indeed, many
researchers [3] have studied the effects of PN in OFDM systems.

Several authors have also proposed various schemes for PN
compensation. In [2, 5], the chosen approach was to counter ro-
tate the received signal constellation, via an estimate of the CPE
term. In this paper, we present a pilot tone aided algorithm that
jointly equalizes the channel and compensates for the CPE in a
time–varying frequency selective channel. The algorithm is based
on the time domain tracking/estimation of the effective dynamic
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channel, i.e., the combined effect of the CPE, and the time-varying
frequency selective channel, so that we may realize effective fre-
quency domain equalization. However, for our estimates of inter-
est, the optimal Bayesian estimators are analytically intractable.
Hence, for online estimation of the effective dynamic channel, we
resort to modern Bayesian methods known as particle filtering.
The basic idea behind particle filters is to approximate the pos-
terior distribution of interest with a set of weighted random sam-
ples (particles). In practice, these methods provide a means of
approximating the optimal Bayesian estimators for nonlinear, pos-
sibly non–Gaussian dynamical systems. Indeed, as the number of
particles become very large, the approximations approach the true
optimal Bayesian estimators [1].

This paper is organized as follows. In Section 2, we intro-
duce the baseband OFDM system. In Section 3, we introduce the
dynamic state space model. Section 4 reviews fundamentals of
particle filter, and Section 5, provides a discussion of our proposed
algorithm. Section 6 presents some simulation results, and con-
cludes this paper.

2. SYSTEM MODEL

The baseband OFDM system under consideration is shown in Fig-
ure 1.
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Fig. 1. Baseband OFDM System

From the information source, log2(M) bits are encoded into M-
QAM symbols am(i), where am(i) denotes the M-QAM symbol
at the i-th subcarrier, of the m-th OFDM block, or symbol. Note
that m is an index in time. Then, P pilot tones are inserted into
am(i), such that:

am(i) =

{
cpilot(i) i ∈ Ω
information data i /∈ Ω
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where Ω denotes the set of pilot tone locations. In particular, we
choose Ω to satisfy [4]:

Ω = {i|i = kS, with k = 0, . . . , P − 1}
where N is the number of subcarriers, and S = N

P
is the spacing

between each pilot tone. After pilot tone insertion, {am(i)}N−1
i=0

are sent to the IDFT, and a cyclic prefix (CP) is introduced to re-
move inter-symbol interference (ISI).

The time varying frequency selective channel h(t, τ) is as-
sumed to be quasi-static over one OFDM symbol, with L inde-
pendent propagation paths. The additive white noise is denoted by
n(t).

At the receiver, the free-running local oscillator introduces PN
φm(t). Because we assume perfect frequency and timing synchro-
nization, we can write the k-th received sample of the m-th OFDM
symbol as:

rm(k) =

L−1∑
l=0

hm,lsm(k − l)ejφm(k) + nm(k)

where nm(k) is assumed to be zero mean complex Gaussian whose
variance is σ2

n, and φm(k) is a sample of the PN process at the
output of the free-running local oscillator. Since we make the as-
sumption that the entire channel impulse response lies within the
CP, i.e., Ncp ≥ L − 1. The discarding of the CP followed by the
DFT of {rm(k)}N−1

k=0 yields:

Ym(n) = am(n)Hm(n) Im(0)︸ ︷︷ ︸
CPE

+

N−1∑
i=0
i�=n

am(i)Hm(i)Im(n − i)

︸ ︷︷ ︸
ICI

+Wm(n) (1)

where

Hm(n) =

L−1∑
l=0

hm,le
−j 2πnl

N

Im(n) =
1

N

N−1∑
k=0

ejφm(k)e−j 2πnk
N

and Wm(n) = DFT{nm(k)}. From (1), we recognize that
PN introduces two problems. The first problem is the additional
phase variation of the desired sample am(n)Hm(n) by the CPE
arg {Im(0)}, and the second is the ICI, which results from the loss
of orthogonality between each sub-carrier. Moreover, if we de-
fine Heff

m (n) = Hm(n)Im(0) as the effective channel response,
then one can see that it is crucial to obtain accurate estimates of
Heff

m (n), so that we may reliably recover am(n). Zero-forcing
(ZF) equalization follows after channel estimation, and the trans-
mitted symbol can be estimated by âm(n) = Ym(n)

Ĥ
eff
m (n)

for n = 0,

. . . , N −1 where Ĥeff
m (n) is the estimate of the effective channel

response, Heff
m (n).

3. STATE SPACE MODEL

Particle filters require a process equation, and a observation equa-
tion. The aim of this section is to develop the required dynamic
state space (DSS) model, through the known statistics of the chan-
nel, and PN process.

3.1. Channel Model

The frequency selective Rayleigh fading channel is characterized
by a tapped-delay model. Channel taps {hm,l}L−1

l=0 are assumed
to be mutually uncorrelated, zero mean complex Gaussian coeffi-
cients, with Jake’s Doppler spectrum [7]. Accordingly, the auto-
correlation of the l-th channel tap hm,l for l = 0 , . . . , L-1 is given
by:

rl(k) = E[hm,lh
∗
m+k,l] = rl(0)J0(2πfdkT ) (2)

where rl(0) denotes the power of the l-th channel tap, fd denotes
the maximum Doppler frequency, T denotes the duration of one
OFDM symbol, and J0(·) is the zeroth-order Bessel function of the
first kind. Exact modelling of (2) via an autoregressive moving-
average (ARMA) model is impossible, because the autocorrela-
tion function is nonrational. However, several authors have ap-
proximated Jakes model with an autoregressive (AR) model. We
follow a similar approach, and model the temporal dynamics of
hm,l, though a AR(2) model [6]:

hm,l = −a1hm−1,l − a2hm−2,l + vm,l, l = 0 , . . . , L-1 (3)

where vm,l is a zero mean complex Gaussian random variable with
variance σ2

l . Model coefficients a1,a2, and σ2
l are chosen so that

the autocorrelation of (3) closely matches (2).

3.2. Phase Noise Model

Discrete time Wiener PN φ(n) corresponds to samples of φ(t) at
time t = nTs, where Ts = T/(N + Ncp) is the sampling period
of the receiver A/D converter. It can be shown that:

φ(n) = φ(n − 1) + w(n) (4)

where w(n) is a zero mean Gaussian random variable with vari-
ance σ2

w = 2πBTs. In the sequel, we will refer to BT as the phase
noise rate. Furthermore, for small φ(n) the m-th CPE θm can be
approximated by the average of the PN that was sampled during
the useful (i.e. data) portion of the m-th OFDM symbol. This fact,
together with (4), yields the desired CPE process equation [2]:

θm = θm−1 + w̃m (5)

where w̃n is a zero mean Gaussian random variable with variance
σ2

cpe =
(

2N2+1
3N

+ Ncp

)
σ2

w.

3.3. Observation Model

Our starting point is (1). At known pilot tone locations, the least
squares (LS) estimate of the effective channel response Heff

m (n)
is:

Ĥeff
m (n) =

Ym(n)

cpilot(n)
, n ∈ Ω

We proceed by stacking {Ĥeff
m (n)}n∈Ω into a P ×1 vector Heff

LS ,
so that we may write:

Heff
LS = VIm(0)hm + Im + Zm

where hm = [hm,0, . . . , hm,L−1]
T is a vector of channel taps, Im

is a vector of ICI quantities, Zm is an AWGN vector, and V is the
following Vandermonde DFT Matrix:

V =

⎡
⎢⎢⎣

1 1 1 1

1 W S
N . . . W

S(L−1)
N

. . . . . . . . . . . .

1 W
(P−1)S
N . . . W

(P−1)S(L−1)
N

⎤
⎥⎥⎦
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with WN = e−j2π/N . Assuming P = L, the Vandermonde ma-
trix is non-singular and hence invertible. Therefore, a noisy esti-
mate of Im(0)hm is given by:

Ym = V-1Heff
LS = Im(0)hm + Ĩm + Z̃m (6)

Equation (6) provides a coarse estimate of Im(0)hm, and can be
seen as an observation equation in our DSS model.

3.4. Dynamic State Space Model

Use of (3), (5), and (6), leads to the considered DSS model:

xm = Fxm−1 + Vm

θm = θm−1 + w̃m

Ym = G(θm)xm + Ĩm + Z̃m

where xm = [hT
m hT

m−1]
T . The matrices F and G(θm) have the

form of:

F =

[−a1IL −a2IL

IL 0L

]
, G(θm) =

[
Îm(0) · IL 0L

]

where in place of Im(0), we have substituted the convenient ap-
proximation Im(0) ≈ Îm(0) = ejθm [2], with IL and 0L de-
noting the L × L identity and all zero matrix respectively. The
notation Vm denotes a vector of the form Vm = [vT

m, 0T
L×1]

T

where 0L×1 is a L × 1 vector of zeroes, and vm is a L × 1 vec-
tor of white Gaussian noise with covariance matrix E[vmvH

m] =
diag(σ2

0 , . . . , σ2
L−1). Ĩm and Z̃m are vectors of transformed ICI

and noise components respectively. Moreover, we make the as-
sumptions in [5], so that for large N the elements of Ĩm approx-
imately follow a zero mean complex Gaussian distribution with
variance σ2

I = 2πBT/3P . In addition, the elements of Z̃m fol-
low a complex Gaussian distribution with zero mean and variance
σ2

Z = σ2
n/P .

The main objective is to obtain the minimum mean square er-
ror (MMSE) estimates of {Îm(0)hm,l}L−1

l=0 :

E[Îm(0)hm|Y1:m] =

∫∫
Îm(0)hmp(θm, hm|Y1:m)dθmdhm

where the density p(θm, hm|Y1:m) denotes the filtering posterior
probability density function (PDF), and the notation (·)1:m, indi-
cates all the elements from time 1 to time m. Unfortunately, the
posterior PDF p(θm, hm|Y1:m) is analytically intractable. Thus,
we propose to numerically approximate p(θm, hm|Y1:m) via par-
ticle filtering, so that we may ultimately estimate the posterior ex-
pectation E[Îm(0)hm|Y1:m].

4. PARTICLE FILTER

The particle filter utilizes a weighted set of samples, to approxi-
mate the filtering posterior PDF p(xm, θm|Y1:m). Thus at time m,
if we draw Np samples {x(i)

m , θ
(i)
m }Np

i=1 from a importance function
π(xm, θm |x1:m−1, θ1:m−1, Y1:m), and recursively update the im-
portance weights {w(i)

m }Np

i=1 as:

w(i)
m ∝ w

(i)
m−1

p(Ym|x(i)
m , θ

(i)
m )p(x(i)

m , θ
(i)
m |x(i)

m−1, θ
(i)
m−1)

π(x(i)
m , θ

(i)
m |x(i)

1:m−1, θ
(i)
1:m−1, Y1:m)

(7)

We have for the empirical approximation of p(xm, θm|Y1:m):

p̂(xm, θm|Y1:m) =

Np∑
i=1

w̃(i)
m δ((xm, θm) − (xm, θm)(i))

where w̃
(i)
m = [

∑Np

j=1 w
(j)
m ]−1w

(i)
m is the normalized importance

weight, and δ(·) is the Dirac delta function.
In practice, however, particle filtering suffer from the Degen-

eracy problem. That is, after a few iterations, all but a few particles
possess insignificant weights. The result is an inefficient particle
filter. Typically, the prescribed solution is to resample the particles,
and the basic idea is to discard particles with weak importance
weights and to multiply ones with sizable importance weights [1].

5. AUXILIARY RAO-BLACWELLIZED PARTICLE
FILTER

For our DSS model, it is possible to design a better algorithm that
yields estimates with lower variances. The idea is to exploit the
inherent linear sub-structure of our given DSS model. Consider
the joint posterior distribution p(xm, θ1:m|Y1:m) written as:

p(xm, θ1:m|Y1:m) = p(xm|θ1:m, Y1:m)p(θ1:m|Y1:m) (8)

It is clear that we can obtain the Gaussian PDF p(xm|θ1:m, Y1:m),
via a Kalman filter, and that we can approximate the marginal
posterior distribution p(θ1:m|Y1:m) with a particle filter. This ap-
proach is commonly known as the Rao-Blackwellized particle fil-
ter (RBPF) [1]. Now, at time m, assume for an estimate of p(θ1:m|
Y1:m) we have:

p̂(θ1:m|Y1:m) =

Np∑
i=1

w̃(i)
m δ(θ1:m − θ(i)

1:m) (9)

Thus, by substituting (9) into (8) and marginalizing over θ1:m−1,
we obtain an estimate of p(xm, θm|Y1:m) that is given by:

p̂(xm, θm|Y1:m) =

Np∑
i=1

w̃(i)
m p(xm|θ(i)

1:m, Y1:m)δ(θm −θ(i)
m) (10)

where p(xm|θ(i)
1:m, Y1:m) is a complex Gaussian PDF with mean

x(i)

m|m = E[xm|θ(i)
1:m, Y1:m], and covariance P(i)

m|m = cov[xm|θ(i)
1:m,

Y1:m]. However, unlike (7), the importance weights for the RBPF
satisfy:

w(i)
m ∝ w

(i)
m−1

p(Ym|θ(i)
1:m, Y1:m−1)p(θ

(i)
m |θ(i)

m−1)

π(θ
(i)
m |θ(i)

1:m−1, Y1:m)
(11)

where π(θm|θ1:m−1, Y1:m) denotes the importance function for
θm. Moreover, we adopt the prior p(θm|θm−1) as our importance
function, in which case the importance weights (11) simplify to:

w(i)
m ∝ w

(i)
m−1p(Ym|θ(i)

1:m, Y1:m−1) (12)

where

p(Ym|θ(i)
1:m, Y1:m−1) = NC(Ym; Y(i)

m|m−1, Sm) (13)

is a complex Gaussian PDF with mean Y(i)

m|m−1 = E[Ym|θ(i)
1:m,

Y1:m−1], and covariance S(i)
m = cov[Ym|θ(i)

1:m, Y1:m−1]. Notice
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that the Kalman filter efficiently computes the PDF’s p(xm|θ(i)
1:m,

Y1:m), and p(Ym|θ(i)
1:m, Y1:m−1) for (10) and (12) respectively.

Therefore, it is apparent that a Kalman filter is associated with
each particle, and that the RBPF utilizes a bank of Kalman filters
to approximate the true filtering posterior distribution.

We observe, however, that the prior p(θm|θm−1) is inefficient;
it proposes samples {θ(i)

m }Np

i=1 without any knowledge of the cur-
rent observation Ym. Thus to incorporate the recent observation
into our proposals, we follow a strategy that is inspired by the
Auxiliary particle filter (APF) [1]. The idea at time m is, to pre-
select (resample) the particles {θ(i)

1:m−1}Np

i=1 that have large pre-

dictive likelihoods p(Ym|θ(i)
1:m−1, Y1:m−1). Indeed, if we rewrite

(12) as:

w(i)
m ∝ w

(i)
m−1p(Ym|θ(i)

1:m−1, Y1:m−1)
p(Ym|θ(i)

1:m, Y1:m−1)

p(Ym|θ(i)
1:m−1, Y1:m−1)

(14)

then (14) suggests that we may instead preselect (resample) the
particles {θ(i)

1:m−1}Np

i=1 according to the importance weights λ
(i)
m ∝

w
(i)
m−1p(Ym|θ(i)

1:m−1, Y1:m−1), and that after resampling, set the

weights to the so-called second stage importance weights w
(i)
m ∝

p(Ym|θ(i)
1:m,Y1:m−1)

p(Ym|θ(i)
1:m−1,Y1:m−1)

. This procedure is advantageous since it uses

information Ym at time m to select the most promising particles
at time m − 1. Unfortunately, it is difficult to evaluate p(Ym|
θ1:m−1, Y1:m−1):

p(Ym|θ1:m−1, Y1:m−1)=

∫
p(Ym|θ1:m, Y1:m−1)p(θm|θm−1)dθm

since p(Ym|θ1:m, Y1:m−1) as given by (13) depends on θm via a
nonlinear measurement function G(θm). However, for small pro-
cess noise σ2

cpe such as the case we are considering, p(θm|θm−1)
is well characterized by a sample µm ∼ p(θm|θm−1). Hence, if
we make the approximation that p(θm|θm−1) ≈ δ(θm −µm), the
predictive likelihood can be approximated by:

p̂(Ym|θ1:m−1, Y1:m−1)=p(Ym|θm = µm, θ1:m−1, Y1:m−1) (15)

The resulting algorithm follows. At time m:

1. For i = 1, . . . , Np, set x̃(i)

m|m−1 = x(i)

m|m−1, P̃
(i)

m|m−1 =

P(i)

m|m−1, θ̃
(i)
m−1 = θ

(i)
m−1 and sample µ

(i)
m ∼ p(θm|θ̃(i)

m−1)

2. For i = 1, . . . , Np, calculate first stage importance weights
λ

(i)
m ∝ w

(i)
m−1p̂(Ym|θ̃(i)

1:m−1, Y1:m−1) using (15), and set∑Np

i=1 λ
(i)
m = 1.

3. Resample {x̃(i)

m|m−1, P̃
(i)

m|m−1, θ̃
(i)
m−1}Np

i=1 w.r.t importance

weights to obtain {x(i)

m|m−1, P
(i)

m|m−1, θ
(i)
m−1}Np

i=1.

4. For i = 1, . . . , Np, draw new samples θ
(i)
m ∼ p(θm|θ(i)

m−1).

5. For i = 1, . . . , Np, compute x(i)

m|m, and P(i)

m|m using Kalman
filter update equations.

6. For i = 1, . . . , Np, calculate the second stage importance

weights w
(i)
m ∝ p(Ym|θ(i)

1:m,Y1:m−1)

p̂(Ym|θ(i)
1:m−1,Y1:m−1)

, and set
∑Np

i=1 w
(i)
m =

1.

7. For i = 1, . . . , Np, compute predicted state x(i)

m+1|m, and

predicted covariance P(i)

m+1|m using Kalman filter predic-
tion equations. Set m → m + 1, and go back to step 1.
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Fig. 2. BER for 16-QAM

6. SIMULATIONS AND CONCLUSIONS

We considered a 16-QAM OFDM system with system parameters
N = 128, P = 4, and Ncp = 8. The total channel bandwidth
was chosen to be Bw = 1MHz, and a four path i.e., L = 4 fre-
quency selective channel was generated from Jakes fading model,
with time-Doppler fading rate fdT = 0.04. The adopted power
delay profile, and time delay profile was [0,-13,-22,-28] (dB), and
[0, 1, 2, 3] µs respectively. The phase noise rate BT was set to
0.01, and the proposed algorithm was implemented with Np = 50
particles. The BER was evaluated at each SNR for 8000 OFDM
symbols, and figure 2 illustrates the results. Our algorithm results
in 2-3 dB improvement over an approach based solely on pilot
tones. For example, at 12 dB our algorithm is approximately 2 dB
away from the ideal curve, while the latter is almost 4 dB away.
In conclusion, we have proposed a new Rao-Blackwellization and
Auxiliary particle filtering technique for channel equalization and
phase noise suppression in OFDM systems. Results show about
2-3 dB improvement over a naive scheme based solely on an LS
estimate of the effective channel using the available pilot tones.
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