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ABSTRACT

Of the different information sources used by blind algo-
rithms, explicit use of Finite Alphabet (FA) data is more re-
cent than either the statistical data embedded at the source
or the algebraic structure present in the channel. In chan-
nels that can be modeled using Finite Impulse Response
(FIR) structures, the FA property results in the received
vector set being clustered around theoretical centers. These
centers are the result of the convolution of the channel ma-
trix with a given transmitter symbol constellation. Defined
as spatial structure in this paper, they provide sufficient in-
formation for blind estimation of channel coefficients. Here,
we introduce two spatial tools, the Primary and Secondary
Clustering Algorithms capable of processing the informa-
tion structures described above. Then, using these two
tools, we present the Channel Estimation By Difference Set
(CEDS) algorithm for the estimating channel impulse re-
sponse coefficients.

1. INTRODUCTION

Mobile communication has become one of the fastest grow-
ing technologies of the twenty first century. However, in-
herent properties of the wireless media place fundamental
limitations on the capacity of such mobile systems. One
of the main problems faced in wireless communication is
Inter Symbol Interference (ISI). Traditionally, ISI has been
compensated using adaptive equalizers with training data.
However, recent demand for high bandwidth has made these
algorithms obsolete with more efficient blind algorithms
taking their place.

Most blind algorithms exploit two primary sources of
embedded data for information: Statistical data via second
[4] and fourth [2] order cumulants, and channel structure
information via subspace algorithms such as the Cross Re-
lational [5], Noise Subspace [6] and Least Squares Smooth-
ing [3]. In addition to the two traditional sources, the finite
alphabet of a transmitter encodes data into the wireless me-
dia [1]. The data structure is visible in the output vector set
of a M -output platform, and bears semblance to a lattice
described in M -space. Such, the data structures are named
as spatial structures in this paper.

This paper is divided into three main sections. First,
we will introduce the spatial structure and the mathemat-
ics used to model it. Secondly, we will formulate tools to
handle the spatial structure. These tools form the core of
spatial data processing our algorithm requires. Finally, we
present our estimation algorithm, the Channel Estimation
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by Difference Sets (CEDS) and conclude this paper by pro-
viding an indepth analysis and discussion into its behavior.

2. MATHEMATICAL PRELIMINARIES

2.1. Signal and Channel Model

Consider a Finite Impulse Response (FIR), Single Input M -
Output (SIMO) channel of length L defined by its impulse
response coefficients {hij}, where i ∈ {1, ..., M} and j ∈
{0, ..., L}. The received baseband signal at the jth receiver
can then be described by,

xj(n) �
L∑

l=0

hjlsn−l + wj(n) (1)

where sn is the transmitted symbol at time index t = nT
and wj(n) is the noise component of the jth channel at the
same time index. T here is the symbol period. Stacking
xj(n), j ∈ {1, ..., M} to form the vector,

x(n) � Hsn + w(n) (2)

we obtain the mathematical model describing the struc-
ture of the received vector in a FIR, SIMO channel. In
the above equation, x(n) � [x1(n), ..., xM (n)]′, w(n) �
[w1(n), ..., wM (n)]′ and sn � [sn, ..., sn−L]′ describe the re-
ceived, noise and transmitted source vectors respectively.
The matrix H � [h1,h2, ....,hM ]′ denotes the impulse chan-

nel matrix with the jth row defined as hj � [hj0, hj1, ...., hjL]′.

2.2. Objective, Assumptions and Notations

The purpose of our algorithm is to recover the channel pa-
rameters H and L using spatial data available in x(n) under
the following key assumptions:

a) The channel is stationary for the time duration needed
to collect data for estimation.

b) The noise {wi} is zero mean, and statistically inde-
pendent of the transmitted symbol sequence.

c) The transmitter symbols are independent and cho-
sen from a finite alphabet. For the purpose of this
paper si ∈ {1,−1}, and we define this alphabet,

CT � {1,−1}.
d) The channel matrix H is full column rank.

Let M denote a Matrix. Then, in developing our paper, we
shall use the notations, M′ and M†, to denote the matrix
operators, transposition and inversion (the pseudo-inverse
when the matrix is not square). Additionally, as described
later, the notation Sa ∼ y(a) will be used to link a state Sa

to its spatial vector y(a).
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2.3. The Spatial Structure

Consider the SIMO system described in (2). Under noise-
less conditions, the received vector x(n) can be represented
using its noiseless counterpart, y(n) = Hsn. Then, un-
der assumptions (a) and (c), the vector set containing all
received noiseless vectors,

Y �
{
y|y = y(i) i ∈ {1, ..., N}

}
(3)

is finite with at most ZL elements. In the equation, N is
the number of received vectors and Z represents the number
of symbols in the constellation CT . Each element of Y ,
y ∈ Y describes a point in an M -dimensional space. Thus
the set Y describes a lattice in M -dimensional space. This
M -dimensional lattice can be thought as a state diagram,
where each element represents a unique state. In this model,
the output vector y(n) can then be seen transiting between
the states in response to the input symbol sn. This duality
between the state diagram and its M -dimensional vector
representation forms the basis of our spatial algorithms. In
this paper, we associate a given state Sk to its respective
M -dimensional spatial vector y(k) by,

Sk ∼ y(k) (4)

The spatial vector y(k) = Hsk, in turn consists of the two
components, the channel matrix H, and the source vector
segment sk = [sk, ..., sk−L]′.

3. SPATIAL TOOLS

3.1. The Primary Clustering Algorithm (PCA)

The clustering algorithm used in our simulations is derived
from the LBG algorithm Daneshgaran uses in [1]. However,
instead of a single step approximation where all states are
extracted from a single clustering iteration, our algorithm
relies on a two-step approach that uses clustering in two
subsequent steps defined by the thresholds D1 and D2. To
begin deriving our algorithm, we shall first define Ỹ to be
the set of extracted cluster vectors initially containing C =
0 elements. The clustering algorithm can then be described
as follows:

i) Scan the received vectors sequentially, comparing the
Euclidean squared distance, d of each received vector
to the established C cluster centers.

dmin = min
m∈{1,...,C}

M∑
i=1

[xi(n) − ỹi(m)]2 (5)

ii) If dmin > D1, add the data vector as a new cluster
center. Otherwise merge it to the closest center, m
weighted by the number of points already merged.

iii) Sort the sub-clusters, ỹ ∈ Ỹ by the number of data
points fused into each center.

iv) Beginning from the least populated sub-cluster, for
each center, j compute distances ljk to all other sub-
clusters, k ∈ {1, ..., C} k �= j.

v) Find the closest center, k satisfying both ljk < D2

and Pj +Pk < PMAX . Then, merge the centers j and
k weighted by their populations.

The resultant set of vectors, Ỹ will be an approximate to the
noiseless lattice structure Y . In this algorithm, Pi denotes
the population of the sub-cluster i.

The distance thresholds D1 and D2 were empirically
calculated using the clustering algorithm in an adaptive
mode. In this step, Monte-Carlo iterations were carried
out for each M -SNR pair, gradually increasing the thresh-
old distance till the number of estimated centers converged
around 2L+2 for D1 in the first phase and to 2L+1 for D2 in
the second phase. Another threshold, PMAX = 0.8N/2L+1

is used in the second clustering phase to limit the number
of vectors coalesced per cluster. This is 80% of the expected
populations for each cluster, and was verified to be a good
index using Monte Carlo iterations.

Using elementary curve fitting on results obtained above,
we were able to derive empirical relationships for the two
thresholds using the noise power, No and M . An interest-
ing outcome of the modeling was the independence of the
first threshold, D1 = No(2M + 5) from the channel length,
L. This implies that the number of centers estimated by
the first step of our clustering algorithm can also be used
as a rough blind estimator of the channel length.

3.2. The Secondary Clustering Algorithm (SCA)

In addition to the primary need to separate the received
data vectors into spatial clusters, we need an additional
clustering tool that enables us to extract vector families.
That is, given a vector family Fv of the vector v having a
population of Pv,

Fv =
{
fi|fi = v + ni i ∈ {1, ..., Pv}

}
(6)

we need to extract the estimates ṽ ≈ v and P̃v ≈ Pv from
a vector set containing the vector family Fv in addition to
other families. Here, the noise ni is assumed to be zero
mean. The algorithm used for this purpose is basically a
derivative of our PCA. It is limited to the steps (i) to (iii),
with a variation in the derivation of D1.

The threshold distance D1 is empirically calculated us-
ing the deviation of the extracted vector population against
the theoretical population. The theoretical population is
extracted from a pilot output which is uncontaminated by
noise. Two instances of the algorithm, one using noiseless
data and the other in an adaptive form are run side by side
across the entire M -SNR spectrum used in this paper. At
each M -SNR, the adaptive algorithm iteratively increases
the threshold distance D1 till the extracted populations falls
within an acceptable range of the theoretical populations.
The expected values of D1 across the twin indices of M and
SNR are then tabulated to be used to separate and extract
vector families.

4. CHANNEL ESTIMATION BY DIFFERENCE
SETS (CEDS) ALGORITHM

In this section, we present an algorithm that estimates the
channel parameters using purely spatial data. We will begin
by introducing the mathematical structures that form the
basis of the CEDS algorithm. To begin understanding the
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structures embedded in the spatial data we first need to
declare the following definition.

Definition: Let d be the difference of two spatial vectors
linked to the states Sb and Sc. Then, d is defined as an
elemental vector of order p, ep, if and only if the spatial
vectors generating the difference vector differ only in the
pth bit position of their respective source vector segments.
That is if,

d ∼ 0.5(Sb − Sc) where

Sb ∼ H[aL, ..., +ap, ..., a0]
′

Sc ∼ H[aL, ...,−ap, ..., a0]
′

then, ep � d

= ap[h1p, h2p, ..., hMp]′ (7)

where {ai} ∈ {−1, +1}.
Using the above definition as an example, consider the

state Sb. Changing the sign of any one symbol, ap in its
source vector segment results in forming another spatial
vector corresponding to a different state, Sc. Moreover,
the difference vector generated between the two states will
be an elemental vector of order p as defined above. This
structure creates the basis for our estimation algorithm. If
difference vectors were to be calculated with respect to a
given state Sb, then at least one vector will be an elemental
vector of order p. Thus, for a channel of length L+1, L+1
unique elemental vectors exist. Consequently if difference
vectors were to be generated for the complete set of states,

V � {v|v = Si i ∈ {1, ..., 2L+1}} (8)

each of the 2L+1 spatial vectors associated with each state
will contribute L + 1 elemental vectors. In other words,
2L+1 copies of each of the unique L + 1 elemental vectors
will exist in the difference vector set,

D � {d|d = 0.5(yi −yj) {i, j} ∈ {1, ..., 2L+1} i �= j} (9)

where yi ∼ Si and d ∼ 0.5(Si − Sj) ⇒ d = 0.5(yi − yj).
However, vectors that are not elemental vectors, i.e.

vectors generated by states differing by more than one bit
in their source vector segments will be less populous. For
a difference vector resulting from q bit differences in the
source vector segments, the maximum number of identical
vectors that can be created is upper bound by

Nq = 2L−q+2 (10)

The elemental vector families in D will be more popu-
lous, and this provides the key to their identification and
consequent extraction by clustering algorithms. Of the el-
emental vectors, (7) indicates that they are in fact channel
coefficients. More precisely, they are columns of H. Thus,
the extracted vector set would be essentially the channel
matrix, albeit having sign and permutation ambiguities.

The ambiguities results from not knowing the time order
of the channel vectors extracted. Sign and permutation
ambiguities can be resolved later using time data in a post
processing step. Let the matrix thus extracted be denoted
by H̃. We can now summarize our algorithm as follows:

i) Use the PCA to extract an estimate of Y , to Ŷ from
the input data vectors x(n) n ∈ {1, ..., N}

Fig. 1. Behavior of the PCA

ii) Generate the difference vector set, D from the esti-

mated vector set Ŷ as shown in (9).

iii) Use population relationships to extract elemental vec-
tors by applying SCA to D.

iv) Using time data, correct sign and permutation ambi-
guities.

5. RESULTS AND DISCUSSION

The channel model we used in our simulations was a stochas-
tic SIMO model, with impulse parameters modeled as zero
mean Gaussian processes having unit variances. Channel
coefficients and noise are assumed identically and indepen-
dently distributed, and in this simulation noise was modeled
as a zero mean Gaussian process. For the reference system,
a channel length of L = 6 was selected with M = 16 re-
ceivers, and the results obtained using a data set of N =
2000 samples per iteration. Finally the results obtained
were then averaged over 30 Monte-Carlo iterations.

In Fig. 1, we illustrate the behavior of the PCA algo-
rithm. There, we plot the maxima, minima and average of
the clusters extracted in the first and second phase from a
Monte Carlo set of 50 iterations. The graph shows that the
average clusters output by the PCA algorithm is relatively
stable. However, the deviation error

EDEV =

min[NC ,2L+1]∑
c=1

min
j∈{1,...,2L+1}

|yc − yj | (11)

deteriorates with SNR. From an alternate point of view, the
PCA algorithm can be seen as an estimator of the channel
length. This is illustrated in Fig. 2. In the figure, the
solid and dotted lines outline the maxima and minima of
the channel estimates. It is evident from the figure that
the channel length estimate begins to deteriorate in succes-
sively higher SNRs as the length increases. Estimation then
becomes problematic when the minima of a channel length
crosses over the maxima of the next lower length.

The behavior of the CEDS algorithm with respect to
the number of multipaths, M and data set size, N is illus-
trated in Fig. 3 and 4 respectively. They indicate that
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Fig. 2. Channel length estimation using PCA

Fig. 3. Behavior of the CEDS against M

the CEDS algorithm performs acceptably in SNR’s below
15 dB. However, in noisy environments its performance de-
teriorates. The effect noise has on the CEDS can be seen
to decrease as the number of multipaths used for estima-
tion increases. This is because then, spatial separation of
the clustered centers increases and the clustering algorithms
are able to coalesce clusters more successfully. Also shown
in the figure are Moulines [6] and Tongs [4] algorithms. Al-
though Moulines algorithm surpasses the CEDS in perfor-
mance with about a 3dB gain, it should be kept in mind
that the results of the CEDS is dependant on both the PCA
and SCA algorithms. Better spatial tools may enable the
CEDS to outperform [6]. Tong’s algorithm outlines the be-
havior expected from statistical algorithms. It outperforms
the CEDS in low SNRs but lags behind it in high SNRs
where the CEDS can take advantage of the finite conver-
gence property built into its deterministic nature.

6. CONCLUSION

A methodology for spatial processing leading to blind chan-
nel identification is presented in this paper. The Primary
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Fig. 4. Behavior of the CEDS against N

Clustering Algorithm generating both an estimate of the
channel length and the noiseless spatial structure forms
the core of our algorithm. Such, knowledge of the chan-
nel length is not required provided the operating SNR is
known.

Additionally, it should be noted that assumption (d)
is not used in the CEDS algorithm. Instead, it is used to
recover the extracted channel matrix from sign and per-
mutation errors. New studies into this area may result in
better algorithms without such limitations.
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