
ON THE BOUNDS OF THE NON-COHERENT CAPACITY OF GAUSS-MARKOV FADING
CHANNELS

Jianqiu Zhang

Dept. of ECE, University of New Hampshire, Durham, NH 03824
e-mail: jianqiu.zhang@unh.edu

ABSTRACT

In this paper, we discuss the upper and lower bounds of the
flat fading Gauss-Markov channel capacity. It is shown that
due to phase variations on correlated channel, the amount
of information carried by phase will not grow with SNR
asymptotically. As a result, optimal coherent designs or de-
signs based on quasi-static assumptions can not be optimal
for correlated fading channels. We also show that channel
correlation may provide significant capacity gain over the
capacity of independent fading channels. It is also shown
that if the input is i.i.d., the asymptotic growth rate of the
capacity is the same as that of independent Rayleigh flat
fading channels. This indicates that the asymptotic region
is very power inefficient.

1. INTRODUCTION

Recently, the calculation of non-coherent fading channel ca-
pacities has received a lot of attention. In [3], an upper and
lower bound on independent Rayleigh flat fading channels
are derived. It is shown that the memoryless Rayleigh flat
fading channel capacity will grow with SNR double loga-
rithmically. The upper and lower bounds are further tight-
ened in [1]. In [4], it is proven that the input distribution
that achieves the capacity on a memoryless Rayleigh flat
fading channel should be discrete with a finite number of
mass points. While the memoryless fading model is ap-
propriate in certain channels such as the frequency hopping
channels, or when large time guards are inserted between
symbols, the Gauss-Markov flat fading model is more ap-
propriate for a larger class of channels with memory. In
[5], it is shown that Gaussian input distributions will gen-
erate bounded mutual information on Gauss-Markov chan-
nels. Most recently, in [2], an upper and lower bound are
derived for correlated Rayleigh fading channel in a single-
input-single-output (SISO) system. However the detailed
capacity characteristics of correlated fading channel is still
not known.

In this paper, we focus on the capacity of Rayleigh flat
fading channels with memory modeled as Gauss-Markov
channels. Only the average power constraint is considered.

We derived a tighter upper bound on channel capacity. Through
our analysis, we have gained some insight to the structure
of the capacity. We conclude that phase variations on cor-
related fading channels will limit the amount of capacity
carried by the phase. The phase capacity will not grow
with SNR asymptotically. This shows that previous designs
based on the assumption of constant phase within a block of
data can not be optimal for correlated fading channels.

On the other hand, the analysis also points out that the
capacity due to channel correlation on correlated channels
could be significant when compared to the capacity of inde-
pendent fading channels

We also show that the asymptotic growth rate of the ca-
pacity must be the same as that of a memoryless Rayleigh
flat fading channel if the input is i.i.d. which is very power
inefficient. Therefore asymptotic regions should be avoided
if possible.

This paper is structured as the following. In section 2,
we describe the formulation of the problem. In section 3,
we derive an upper and lower bound of the Gauss-Markov
channel capacity. It is shown that the growth rate with SNR
is the same as that of a memoryless Rayleigh flat fading
channel.

2. PROBLEM FORMULATION

Consider the following simple model of a flat fading chan-
nel with memory.

Yi = SiXi + Vi, (1)

where Xi is the input signal at symbol time i, Vi is the addi-
tive complex circular Gaussian noise at the receive antenna
with zero mean and unit variance, and Yi is the output signal
at the receiver. The channel states or the fading coefficients,
Sis, are modeled as samples of a complex Gauss-Markov
process with zero mean and a covariance matrix ΣSn. The
marginal distribution of the channel states should be com-
plex Gaussian with zero mean and unit variance. The capac-
ity of the channel described above is given by the supreme
of the averaged mutual information over n channel uses as
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n → ∞. We can write the average mutual information as

In =
1
n

I(Xn, Y n) =
1
n

[h(Y n) − h(Y n|Xn)], (2)

where Xn = {X1, · · · , Xn} represents the input sequence
and Y n ={Y1,· · · , Yn} represents the sequence of output
symbols. We use the same convention to represent other
sequences throughout of the paper. Note that the input se-
quence has an average power constraint P , 1

n

∑n
i=1 X2

i ≤
P . Let n1 = {i1, i2, · · · , in1} represent the set of indices
such that if i ∈ n1, then Xi �= 0, let n2 represent the set of
indices such that if i ∈ n2, then Xi = 0. In the following
text, |·| represents the size of the set of indices if the operand
is a set, and if the operand is a complex number, it represents
the amplitude of the complex number. Using the above no-
tations, the conditional differential entropy h(Y n|Xn) can
be written as

h(Y n|Xn) = h(Y n1 , Y n2 |Xn)
= h(Y n1 |Xn) + h(Y n2 |Xn, Y n1)
= h(Y n1 |Xn) + h(V n2). (3)

3. UPPER BOUND

Lemma 1:

h(Y n1 |Xn) ≥ h((SX)n1 |Xn), (4)

where (SX)n1 represents the sequence of squared output
amplitude before the observation noise.
Proof: We can write h(Y n1 |Xn) as h((SX + V )n1 |Xn),
and the sequence (SX + V )n1 is complex Gaussian with
zero mean and a covariance matrix

Σy = 1|n1| + X′ΣSn1X,

where X = [X1, · · · , X|n1|]
T = Xn1 is the vector rep-

resentation of the non-zero input sequence, ΣSn1 represent
the covariance matrix of the channel states when the inputs
are non-zero, 1|n1| stands for an identity matrix with |n1|
dimensions, and ()′ stands for the Hermitian transpose of
the operand. Similarly, (SX)n1 is also a complex Gaussian
sequence with zero mean and a covariance matrix

Σsx = X′ΣSn1X.

Since Σy − Σsx = 1|n1| is positive definite, using Lemma
[10.6.2] in [6], we have |Σy| ≥ |Σsx|. Consequently, we
have

h((SX + V )n1 |Xn) = ln(π)|n1||Σy|
≥ h((SX)n1 |Xn) = ln(π)|n1||Σsx|. (5)

Now the mutual information in (2) can be upper bounded as

In ≤ 1
n

[h(Y n) − h((SX)n1 |Xn) − h(V n2)]. (6)

Let (|Y |2)n represent the sequence of squared output ampli-
tude, and θY

n represent the sequence of the output phase. It
can be verified that the differential entropy of the output can
be written as

h(Y n) = h((|Y |2)n) + h(θn
Y |(|Y |2)n) + n ln 2,

where ln 2 is due to the Jacobian of the transformation of
Y n from complex numbers to phase and squared amplitude
sequences. Similarly the conditional differential entropy as

h((SX)n1 |Xn) = h((|SX|2)n1 |Xn)
+h(θn1

SX |(|SX|2)n1 , Xn) + |n1| ln 2,

where (|SX|2)n1 stands for the squared amplitude sequence
of the output before adding the observation noise, and θn1

SX

represents the phase sequence of the output before adding
the observation noise. Now (6) can be expressed as

nIn ≤ h((|Y |2)n) − h((|SX|2)n1 |Xn) − h((|V |2)n2)
+h(θn

Y |(|Y |2)n) − h(θn1
SX |(|SX|2)n1 , Xn)

−h((θV )n2 |(|V |2)n). (7)

The upper bound of the averaged mutual information In can
be analyzed from two parts,

nIAn = h((|Y |2)n) − h((|SX|2)n1 |Xn) − h((|V |2)n2)
(8)

and

nIθn = h(θn
Y |(|Y |2)n) − h(θn1

SX |(|SX|2)n1 , Xn)
−h((θV )n2 |(|V |2)n), (9)

which correspond to the mutual information between the
amplitude and between the phase.

Theorem 1: nIAn can be upper bounded as

nIAn ≤ Ciid+ln
∑

i:Xi �=0

1 + |Xi|2
|Xi|2 +n−h((|S|2)n1), (10)

Proof: From Theorem [9.6.3] in [6], h((|SX|2)n1 |Xn) can
be written as

h((|SX|2)n1 |Xn)

= h((|S|2)n1) +
∑

i:i∈n1

ln |Xi|2

= h((|S|2)n1) +
∑

i:i∈n1

ln(1 + |Xi|2) −

∑
i:i∈n1

ln
1 + |Xi|2
|Xi|2 . (11)
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Now nIAn in (8) can be expressed as

nIAn = h((|Y |2)n) − h((|V |2)n2)

−
∑

i:i∈n1

ln(1 + |Xi|2) − |n1| + |n1|

−h((|S|2)n1) +
∑

i:i∈n1

ln
1 + |Xi|2
|Xi|2

(a)
= h((|Y |2)n) −

∑
i:i∈n

ln(1 + |Xi|2) − n + |n1|

−h((|S|2)n1) +
∑

i:i∈n1

ln
1 + |Xi|2
|Xi|2

(b)

≤ hiid((|Y |2)n) −
∑
i:i∈n

ln(1 + |Xi|2)

−n + |n1| − h((|S|2)n1)

+
∑

i:i∈n1

ln
1 + |Xi|2
|Xi|2

(c)

≤ nCiid + |n1| − h((|S|2)n1)

+
∑

i:i∈n1

ln
1 + |Xi|2
|Xi|2

≤ nCiid + n − h((|S|2)n1)

+
∑

i:i∈n1

ln
1 + |Xi|2
|Xi|2 (12)

where (a) follows because

h((|V |2)n2) =
∑

i:i∈n2

ln(1 + |Xi|2) + |n2|,

merging this term with
∑

i:i∈n1

ln(1 + |Xi|2) + |n1|,

we have the expression in (a). In Step (b), hiid((|Y |2)n)
stands for the differential entropy of the squared output am-
plitude given the same i.i.d. input and if the channel is
i.i.d. distributed according to the marginal distribution of
the Gauss-Markov channel. The proof for the inequality

h((|Y |2)n) ≤ hiid((|Y |2)n) (13)

is provided in Appendix A. Consequently maximizing

hiid((|Y |2)n) −
∑
i:i∈n

ln(1 + |Xi|2) − n

is equivalent to maximizing the mutual information of an in-
dependent Rayleigh flat fading channel with the conditional
output differential entropy

h((|Y |2)n|Xn) =
∑
i:i∈n

ln(1 + |Xi|2) + n.

The result is the Rayleigh fading channel capacity nCiid. In
fact, as n → ∞, it can be proved (the proof is trivial and

is not shown here.) that 1
n

∑
i:i∈n1

ln 1+|Xi|2
|Xi|2 → 0 and the

bound on IAn can be written as IAn ≤ Ciid+1−h((|S|2)).
Note that these results are proven for the case when the
channel input is i.i.d., which is a reasonable assumption.
The inequality in (13) should also hold in correlated input
cases, and our result could be generalized. This is an area
that we will look into in the future.

Next, we focus on the analysis of Iθn in (9),

nIθn = h(θn
Y |(|Y |2)n) − h(θn1

SX |(|SX|2)n1 , Xn)
−h((θV )n2 |(|V |2)n)

(a)

≤ h(θn
Y ) − h(θn1

SX |(|SX|2)n1 , Xn)
−h((θV )n2), (14)

where (a) follows because condition reduces entropy, and
the for the i.i.d. complex Gaussian noise, the phase is inde-
pendent of the amplitude. The term h(θn1

SX |(|SX|2)n1 , Xn)
can be further bounded,

h(θn1
SX |(|SX|2)n1 , Xn)

= h((θX + θS)n1 |(|SX|2)n1 , Xn)
(a)
= h(θn1

S |(|SX|2)n1 , Xn)
(b)

≥ h(θn1
S ||S|n1 , (|SX|2)n1 , Xn)

(c)
= h(θn1

S ||S|n1), (15)

where (a) follows because translation does not change en-
tropy, (b) follows because condition reduces entropy, and
(c) follows because given |S|n1 , θn1

S becomes independent
from ((|SX|2)n1 , Xn).

Using (15), we can further upper bound nIθn in (14) as

nIθn ≤ h(θn
Y ) − h(θn1

S |(|S|)n1) − h((θV )n2)
(a)

≤ |n1| ln(2π) − h(θn1
S |(|S|)n1)

≤ n ln(2π) − h(θn1
S |(|S|)n1), (16)

where (a) follows because h(θn
Y ) ≤ n ln(2π), and

h((θV )n2) = n2 ln(2π).

This shows that the amount of information that can be car-
ried by phase is upper bounded by a constant that does not
change with SNR. As long as there is uncertainty about the
fading channel, h(θn1

S |(|S|)n1) will be limited, and Iθn will
be limited. If the channel model is coherent or quasi-static,
then h(θn1

S |(|S|)n1) would approaches to ∞. Modulation
schemes designed for these channels have to explore the
unlimited capacity of the phase in order to be considered
optimal. However, since in a correlated fading channel, the
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phase only provides limited capacity, it is safe to speculate
that optimal designs based on the coherent or quasi-static
fading assumptions can not be optimal.

A combined upper bound becomes

In ≤ Ciid +
|n1|
n

ln 2π + 1 − 1
n

h(Sn1) − |n1|
n

ln 2

= Ciid +
|n1|
n

lnπ + 1 − 1
n

h(Sn1). (17)

Note that this result is similar to the result in [2] where the
upper bound is given as In ≤ Ciid + lnλmin, where λmin

stands for the minimum eigenvalue of the channel correla-
tion matrix ΣSn. We can prove that our bound is tighter
when the channel is Gauss-Markov. Assume that the deter-
minate of the channel covariance matrix is K = |ΣSn|, then
our bound can be reduced to the form In ≤ Ciid − 1

n lnK.

Since λmin ≤ K
1
n , this proves that our bound is tighter.

From the upper bound, we can also infer that the corre-
lation of the channel can provide significant capacity gain
over Ciid. For example, at 50dB, we have Ciid(SNR) ≤
1.5 bits according to the optimized upper bound on Ciid in
[1]. However, at 50dB, where our bound in (17) is expected
to be quite tight, the channel correlation can provide upto
2.3279 additional bits in capacity when assuming the first
order Gauss-Markov model with a correlation coefficient of
a = 0.95. When a = 0.95, the Gauss-Markov model ap-
proximates a fast fading channel with a normalized Doppler
frequency shift of approximately fdTs = 0.05. Even with
fading this fast, it is still possible to double the transmission
rate if we utilizes the channel correlation.

It is easy to show that the asymptotic growth rate of
the upper bound in (17) of the Gauss-Markov channel ca-
pacity is the growth rate of Ciid. A natural lower bound
on the Gauss-Markov channel capacity is Ciid, because by
using interleaving techniques, a correlated Gauss-Markov
channel can be turned into an approximate i.i.d. Rayleigh
fading channel. Therefore, the growth rate of the lower
bound is ∂Ciid

∂P . Combining the analysis on the growth rate
of the upper and lower bound, we conclude that the asymp-
totic growth rate of the channel capacity on a Gauss-Markov
flat fading channel must be ∂Ciid

∂P which is proportional to
log log(SNR). This indicates that the asymptotic region is
very power inefficient and the region should be avoided is
possible.

4. APPENDIX A

Proof of (13), h((|Y |2)n) ≤ hiid((|Y |2)n).
Let p(|Y |2) represent the marginal distribution of the squared
amplitude of the output of a Gauss-Markov channel. Let
p(S) represent the marginal distribution of a Gauss-Markov
channel, it is a common knowledge that p(S) is complex
Gaussian with zero mean and unit variance. Hence, p(S) =

piid(S), where piid represent the channel state distribution
of an independent Rayleigh fading channel with zero mean
and unit variance. As a reference, please see the discussion
in section [13.3] in [7]. Suppose the input is i.i.d, we have

p(|Y |2) =
∫

p(|Y |2|S, X)p(S)p(X)dsdx

=
∫

piid(|Y |2|S, X)piid(S)p(X)dsdx

= piid(|Y |2), (18)

where p(|Y |2|S, X) and piid(|Y |2|S, X) represent the out-
put conditional distributions given the channel state and the
input on the Gauss-Markov and the independent Rayleigh
channels. Since these conditional distribution is determined
by the nature of the observation noise only if given the same
channel state and input, we must have piid(|Y |2|S,X) =
p(|Y |2|S, X). Hence, we have

h((|Y |2)n)
(a)

≤ nh(|Y |2) = hiid((|Y |2)n), (19)

where (a) follows due to the independence bound on en-
tropy.
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