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ABSTRACT

We show how to compute the minimum mean squared
prediction error of a mobile-radio fading envelope mod-
eled as a stationary process arising from a diffuse set
of local scatterers. Our approach reduces the predic-
tion problem to an eigenvalue decomposition, and is ap-
propriate when the prediction is to be based on error-
corrupted estimates of a narrowband fading process.
Such prediction can improve the performance of adap-
tive modulation techniques that require up-to-date
channel-state information for optimal performance.

1. INTRODUCTION

In mobile radio, adaptive modulation requires the use
of fading-envelope prediction to overcome delays in feed-
ing channel-state information back from receiver to
transmitter [1, 2]. In this paper, we show how to com-
pute the minimum mean squared prediction error of a
fading envelope modeled as a stationary process aris-
ing from a diffuse set of local scatterers. The prediction
is based on estimates of the fading envelope over a fi-
nite interval of past values, with the estimation errors
on this interval modeled as white noise. Our approach
reduces the prediction problem to an eigenvalue decom-
position [3, p. 242]. This has advantages over the more-
common spectrum-factorization approach [3, Sec. 11-6]
when the prediction is to be based on error-corrupted
estimates of a narrowband fading process, because the
spectrum of such a process is nearly discontinuous, and
is thus difficult to approximate with a rational function.
Example curves are shown for a fading envelope having
a Clarke-type Doppler spectrum [4].

2. PREDICTION OF THE FADING
ENVELOPE

Let x(t) be a quadrature component of a fading en-
velope, modeled as a zero-mean, wide-sense stationary

random process, and let

x̃(t) = x(t) + v(t), (1)

where x̃(t) is an estimate of past values of the fading en-
velope and v(t) represents the estimation errors. These
errors are modeled as zero-mean white Gaussian noise
with variance σ2

v , and are uncorrelated with x(t). We
want to predict the value of x(r) for arbitrary r, given
a known, T -length segment of x̃(t), τ seconds in the
past, using a linear predictor

x̂(r) =
∫ r−τ

r−τ−T

x̃(t)h(r − t)dt. (2)

We seek a function h(t) that minimizes the mean squared
prediction error,

J = E{[x(r) − x̂(r)]2}. (3)

Because of the stationarity of x̃(t), J does not depend
on r. Thus, making use of (1), (2) and (3), and letting
r = τ + T

2 we have

J = E
⎧⎨
⎩

[
x(τ + T

2 ) −
∫ T

2

−T
2

x̃(t)h(τ + T
2 − t)dt

]2
⎫⎬
⎭

= E
{[

x(τ + T
2 ) −

∫ T
2

−T
2

x(t)h(τ + T
2 − t)dt

−
∫ T

2

−T
2

v(t)h(τ + T
2 − t)dt

]2
⎫⎬
⎭

= E
⎧⎨
⎩

[
x(τ + T

2 ) −
∫ T

2

−T
2

x(t)h(τ + T
2 − t)dt

]2
⎫⎬
⎭

+ E
⎧⎨
⎩

[∫ T
2

−T
2

v(t)h(τ + T
2 − t)dt

]2
⎫⎬
⎭ (4)

because x(t) and v(t) are uncorrelated. Note that we
have chosen r such that the limits of integration in (4)
are symmetric. This is advantageous since it leads to
a symmetric eigenvalue problem in what follows.
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3. PROBLEM TRANSFORMATION

We start by expressing h(t) as an expansion,

h(t) =
∞∑

n=0

anφn(τ + T
2 − t) t ∈ [τ, τ + T ]. (5)

with {φn(t)} the countable orthogonal solutions of

∫ T
2

−T
2

φ(s)Rxx(t − s)ds = λφ(t), (6)

where Rxx(t) is the autocorrelation of x(t). In keeping
with the convention of Slepian, et al. [5], we scale each
φn(t) such that

∫ T
2

−T
2

φ2
n(t)dt = λn. (7)

The expansion (5) is valid if {φn(t)} is complete
on t ∈ [−T

2 , T
2 ]. This is assured if Rxx(t) is positive

definite [3, p. 374]; that is, if

∫ T
2

−T
2

∫ T
2

−T
2

Rxx(t − s)f(s)f∗(t) ds dt > 0 (8)

for any f(t) with

∫ T
2

−T
2

|f(t)|2dt > 0. (9)

To determine a sufficient condition to satisfy (8), let
f(t) = 0 for t /∈ [−T

2 , T
2 ]. Then, writing Rxx(t) as the

inverse Fourier transform of the power spectral density,
Sxx(ω), and changing the order of integration, it is not
difficult to show that

∫ T
2

−T
2

∫ T
2

−T
2

Rxx(t − s)f(s)f∗(t) ds dt

=
1
2π

∫ ∞

−∞
Sxx(ω)|F (ω)|2dω, (10)

where F (ω) is the Fourier transform of f(t). Now f(t)
it time limited and, from (9), not identically zero. Thus
we can have F (ω) = 0 only on a set of zero measure.
Hence, if Sxx(ω) > 0 on a set of positive measure, (10)
shows that (8) is satisfied. This condition on Sxx(ω) is
met whenever the fading envelope is modeled as aris-
ing from a diffuse set of local scatterers, as it often is
when the number of such scatterers is considered to
be large, and thus not individually resolvable (see e.g.
Clarke [4]).

Bearing this restriction in mind, and letting Pxx

represent the power of x(t), we have

E
⎧⎨
⎩

[
x(τ + T

2 ) −
∫ T

2

−T
2

x(t)h(τ + T
2 − t)dt

]2
⎫⎬
⎭

= E
{

x2(τ + T
2 )

− 2
∫ T

2

−T
2

x(τ + T
2 )x(t)h(τ + T

2 − t) dt

+
∫ T

2

−T
2

∫ T
2

−T
2

x(t)x(s)h(τ + T
2 − t)

· h(τ + T
2 − s) dt ds

}

= Pxx − 2
∫ T

2

−T
2

Rxx(τ + T
2 − t)h(τ + T

2 − t) dt

+
∫ T

2

−T
2

∫ T
2

−T
2

Rxx(t − s)h(τ + T
2 − t)

· h(τ + T
2 − s) dt ds

= Pxx

− 2
∫ T

2

−T
2

Rxx(τ + T
2 − t)

∞∑
n=0

anφn(t) dt

+
∫ T

2

−T
2

∫ T
2

−T
2

Rxx(t − s)

·
∞∑

n=0

∞∑
p=0

anapφn(t)φp(s) dt ds

= Pxx

− 2
∞∑

n=0

an

∫ T
2

−T
2

φn(t)Rxx(τ + T
2 − t) dt

+
∞∑

n=0

∞∑
p=0

anap

∫ T
2

−T
2

φn(t)

·
[∫ T

2

−T
2

φp(s)Rxx(t − s) ds

]
dt

= Pxx − 2
∞∑

n=0

anλnφn(τ + T
2 )

+
∞∑

n=0

∞∑
p=0

anapλp

∫ T
2

−T
2

φn(t)φp(t) dt

= Pxx − 2
∞∑

n=0

anλnφn(τ + T
2 ) + a2

nλ2
n,

(11)

where (5), (7) and the orthogonality of {φn(t)} were
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used, and where each φn(t) is defined for all t by (6).
Considering now the noise term of (4) we have

E
⎧⎨
⎩

[∫ T
2

−T
2

v(t)h(τ + T
2 − t)dt

]2
⎫⎬
⎭

= σ2
v

∫ T
2

−T
2

h2(τ + T
2 − t)dt

= σ2
v

∫ T
2

−T
2

[ ∞∑
n=0

anφn(t)

]2

dt

= σ2
v

∞∑
n=0

a2
n

∫ T
2

−T
2

φ2
n(t)dt

= σ2
v

∞∑
n=0

a2
nλn. (12)

4. SOLUTION OF THE PREDICTOR

Combining (4), (11), and (12) we have

J = Pxx+
∞∑

n=0

−2anλnφn(τ+ T
2 )+a2

nλn(λn+σ2
v). (13)

Setting the partial derivatives to zero we have

∂J

∂ak
= −2λkφk(τ + T

2 ) + 2akλk(λk + σ2
v) = 0. (14)

Solving for ak yields

ak =
φk(τ + T

2 )
λk + σ2

v

. (15)

This may be substituted into (5) to obtain h(t). Thus,
the predictor (2) is determined.

Note that the expression (15) for the coefficients
{ak} has the same form as the expression we previously
found for bandlimited processes with flat spectral den-
sities [6, eq. 14]. In that case, σ2

v was interpreted as a
Lagrange multiplier arising out of an energy constraint.
The basis functions {φn(t)} were the prolate spheroidal
wave functions [5], which are the solutions of (6) when

Rxx(t) =
sin Ωt

πt
, (16)

with Ω the band limits of the process x(t). The solution
presented in this paper generalizes those results, by ac-
commodating processes with a wider class of spectral
densities, including non-bandlimited processes. On the
other hand, since mobile-radio fading envelopes are of-
ten modeled as bandlimited [4, 7, 8], it is important to

note that for such processes, the modeling of estima-
tion errors v(t) in (4) is critical, since the optimization
problem otherwise fails to have a solution [9].

When noise is modeled, the predictor problem can
be solved by factoring the spectrum [3, Sec. 11.6], as
is often done in Wiener problems. But for bandlimited
and narrowband fading envelopes, this approach is dif-
ficult, because the signal-plus-noise spectrum is nearly
discontinuous, and is not easy to approximate using a
rational function.

We may also substitute (15) into (13) to get the
minimum mean square prediction error,

Jmin = Pxx −
∞∑

n=0

λn

φ2
n(τ + T

2 )
λn + σ2

v

. (17)

5. COMPUTING BASIS FUNCTION
VALUES

The basis functions {φn(t)} and eigenvalues {λn} are
solutions of the integral eigenvalue problem (6). We
compute these solutions using the Nystrom method [10,
p. 791]. First, we approximate the integral in (6) with
a quadrature rule

N∑
j=1

wjφ(tj)R(t − tj) = λφ(t), (18)

where {wj} are the weights of the quadrature rule and
{tj} are the quadrature points. Now we evaluate this
equation at the quadrature points,

N∑
j=1

wjφ(tj)R(ti − tj) = λφ(ti) i = 1, 2, . . . , N. (19)

Next, we let K be an N × N matrix with

[K]i,j = wjR(ti − tj), (20)

and we let φ be an N × 1 vector with

φ = [φ(t1)φ(t2) . . . φ(tN )]T . (21)

Then (19) may be written as a matrix eigenvalue prob-
lem

Kφ = λφ. (22)

This problem has N eigenvectors {φn} and N eigenval-
ues {λn}, which may be determined numerically and
substituted into (18). The resulting equation may be
solved for the eigenfunction

φn(t) =
1
λn

N∑
j=1

wjφn(tj)R(t − tj). (23)
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Fig. 1. Minimum mean squared prediction error of a
Clarke-type fading envelope.

This allows us to evaluate φn(t) for t that are not
quadrature points. Note that, in (23), only terms with
significant eigenvalues need be used.

Also, from (20), note that K is not a symmetric
matrix. Symmetry can be restored to the eigenvalue
problem (22), though, using a straightforward tech-
nique [10, p. 794].

6. OBSERVATIONS AND CONCLUSIONS

Using Gaussian quadrature with N = 96 in (19) [11,
p. 887], and making use of (17) and (23), we obtain
the curves shown in Figure 1. These show the minimum
mean squared prediction error of a unity-power Clarke-
type mobile-radio fading envelope with Rxx(t) =
J0(Ωt) [4], where again, x(t) is an Ω-bandlimited pro-
cess. The prediction is based on past estimates over
an interval of length T = 0.2 sec. The level of white-
noise errors on this interval is expressed as a signal-to-
noise ratio on the horizontal axis. The prediction is for
τ = .04 sec. in the future.

Note that, as the estimation SNR improves, the
prediction error approaches zero. This is a general
property of bandlimited processes [9]. Also, it is clear
that the prediction error depends strongly on the max-
imum Doppler frequency fm = Ω/2π, but the curves
in Figure 1 hardly vary from analogous ones plotted
using (16). This suggests that the predictability of the
mobile-radio fading envelope may be more profoundly
affected by the maximum Doppler frequency than by
the exact shape of the Doppler spectrum.
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