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ABSTRACT

In wireless communications, the channel is typically mod-
eled as a random linear time-varying system that spreads the
transmitted signal in both time and frequency due to multi-
path and Doppler effects. In this paper, we show how time-
frequency analysis can be used to model and estimate the
channel of a multi-carrier spread spectrum (MC-SS) sys-
tem with a complex quadratic spreading sequence. We will
show that in this case the effects of time delays and Doppler
frequency shifts can be characterized effectively as time-
shifts. Using the discrete evolutionary transform (DET) we
are able to estimate these effective time shifts via a spread-
ing function and use them to equalize the channel. To illus-
trate the performance of the proposed method we perform
several simulations with different levels of channel noise,
jammer and Doppler frequency shifts.

1. INTRODUCTION

In high speed mobile communications, orthogonal frequency
division multiplexing (OFDM), as a multi-carrier modula-
tion technique, is well known for its high performance in
multipath fading environments compared to single carrier
systems. Likewise, spread spectrum systems are well known
for their mitigation of intentional jamming or nonintentional
co-channel interference. Combining these two has led to
multi-carrier spread spectrum (MC-SS), multi-carrier direct
sequence spread spectrum (MC-DS), and multi-tone spread
spectrum (MT-SS) systems [1, 2, 3]. In MC-SS, the data is
spread by complex coefficients and then modulated by car-
riers of different frequencies. To achieve desirable flat spec-
trum, while providing a constant envelope, complex quadratic
sequences are used as the spreading functions [2]. In this
paper, we will show that we can take advantage of the prop-
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erties of these sequences in the estimation of the communi-
cation channel and in the design of coherent receivers.

Given the time and frequency spreading caused by the
time-varying nature of the communication channel, equal-
ization is needed to be able to recover the sent data. Al-
though the time-varying nature of the channel is due to
Doppler shifts, in many practical situations they are not sig-
nificant or not considered. For instance, the RAKE receiver
used in CDMA spread spectrum works well under slow fad-
ing even though the Doppler shifts are not considered [4, 5].
However if the Doppler shifts are considered, the perfor-
mance of the receiver is improved.

Transmission channels are modeled as random, time-
varying systems [6, 7, 8]. In this paper, we propose an
MC-SS channel model that is linear and time varying for
the duration of a data bit. This provides a characterization
of multi-path fast fading as well as slow fading. The com-
plex quadratic sequence in [2] is a complex linear chirp of
unit amplitude and its discrete Fourier transform is also a
linear chirp of unit magnitude, which are orthogonal when
cyclically shifted. We will show how to use these character-
istics to estimate the parameters of the LTV model by means
of the spreading function computed from the discrete evo-
lutionary transform (DET) of the received signal. This per-
mits an evaluation of the number of paths, delays, Doppler
frequency shifts and the gains characterizing the channel for
one or more data bits. This information is then used to esti-
mate the data bit sent [9].

2. CHANNEL MODEL

The time-varying frequency response of the channel, also
known as Zadeh’s function [10], characterizes the channel
in terms of time delays, Doppler frequency shifts and gains,
all of which vary randomly in the modeling. The exist-
ing connection between the Zadeh’s function and the evo-
lutionary spectral theory can thus be exploited to estimate
the channel parameters and provide a way in the receiver
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to detect the transmitted data [9]. An L-path fading chan-
nel with Doppler frequency shifts is generally modeled by a
separable impulse response:

h(n, k) =
L−1∑

�=0

h�(n − k)f�(n)

=
L−1∑

�=0

α�δ(n − N�)ejψ�n (1)

where we have replaced h�(n) = δ(n−N�), as the impulse
response of the all-pass systems corresponding to delays
{N�}, and f�(n) = α�e

jψ�n where {ψ�} are the Doppler
frequencies with gains {α�}. Without loss of generality, we
assume that the above model is valid for one bit, thus the
model needs to be adjusted when considering slow or fast
fading. In either case, the channel model is characterized,
for one or more bits, by the number of paths L, the delays
{N�}, and the Doppler frequency shifts {ψ�}. We will now
show how to estimate these parameters using the evolution-
ary spectral theory.

As shown in [9], the frequency response of the LTV
channel H(n, ωk) is given by;

H(n, ωk) =
L−1∑

�=0

α�e
jψ�ne−jωN� , (2)

which can be easily verified to be the Fourier Transform
of the separable impulse response h(n, k) in (1). Now, the
bi-frequency function B(Ω, ωk) is found by computing the
Fourier transform of H(n, ωk) with respect to the n vari-
able:

B(Ω, ω) = 2π

L−1∑

�=0

α�e
−jωN�δ(Ω − ψ�) (3)

Finally, from the inverse Fourier transform of B(Ω, ω), with
respect to ω, the spreading function is given by;

S(Ω, k) = 2π

L−1∑

�=0

α�δ(Ω − ψ�)δ(k − N�) (4)

which displays peaks located at the delays and the corre-
sponding Doppler frequencies, and with 2πα � as their am-
plitudes, which are used to estimate the bit sent.

3. MC-SS CHANNEL MODELING AND
ESTIMATION

In MC-SS [1, 2, 3] the bit sequence d(n) is spread by fre-
quency domain spreading coefficients {G(k)} which then
modulate multiple carriers. The time-domain view of MC-
SS corresponds to a direct sequence spread spectrum with a

complex spreading function g(n) which is the IDFT of the
G(k). The transmitted signal thus depends on the spread-
ing sequence used, which typically has flat spectrum, but
not a constant amplitude. The constant envelope in time
and frequency is required for the spreading characteristics
as well as technical reasons. In [2], the following complex
quadratic sequences are used to spread the message in time
and in frequency:

g(n) = e−j π
8 ej 2π

N
1
2 n2

, n = 0, · · · , N − 1

G(k) = ej π
8 e−j 2π

N
1
2 k2

, k = 0, · · · , N − 1

These are linear chirps with the following properties:

• g(n) and G(k) are DFT pair and G(k) = g(k)∗,
where ∗ denotes complex conjugate,

• g(n) and G(k) have constant envelope,

• Circularly shifted versions of g(n) or G(k) are or-
thogonal.

For the baseband case, the transmitted signal s(n) is given
by

s(n) =
N−1∑

k=0

d G(k) ejωkn, 0 ≤ n ≤ N − 1

= dg(n) (5)

therefore the output of the time-varying channel, y(n) be-
comes

y(n) = d
L−1∑

�=0

α�g(n − N�)ejψ�n (6)

where L corresponds to the number of paths, {N �} and
{ψ�} are the corresponding time delays and Doppler fre-
quency shifts. Note that we only consider integer time and
Doppler frequency shifts. We assume the received signal
r(n) is corrupted by a white Gaussian channel noise η(n),
and a jamming interference j(n) so that, r(n) = y(n) +
η(n) + j(n).

According to the properties of g(n) we have : 1) Any
time delay caused by the channel on g(n) is equivalent to a
Doppler frequency shift on g(n); 2) Any Doppler frequency
shift on g(n) is equivalent to a time advance on g(n). These
can be shown as follows:

1. Delay by N0:

g(n − N0) = e−j π
8 ej 2π

2N (n−N0)
2

= g(n)e−j 2π
N N0nej π

N N2
0

where e−j(2πN0n/N) corresponds to a Doppler shift
ψ0 = −2πN0/N and ej(2πN2

0 /2N) is a constant.
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2. Doppler frequency shift by ψ1 = 2π
N N1:

g(n)ejψ1n = e−j π
8 ej 2π

2N n2
ejψ1n

= g(n + N1)e−j 2π
2N N2

1

where g(n + N1) is g(n) advanced by N1 samples
and e−j(2πN2

1 /2N) is a constant. Considering a third
case:

3. Delay N0 and Doppler frequency shift ψ1 = 2π
N N1:

g(n − N0)ejψ1n = g(n)e−j
2π(N0−N1)n

N ej
πN2

0
N

= g(n − N0 + N1)e−j
π(N2

1−2N0N1)
N

The last item indicates that when g(n) is delayed in time
and shifted in frequency the result is that g(n) is shifted
in time only by an effective value Ne = −N0 + N1 and
multiplied by a complex constant. Considering when there
are no noise and jammer, the received signal is y(n) =∑L−1

�=0 α�g(n − Ne,�), after taking care of the Doppler ef-
fects of the channel. Although in this case the method in
[9], based on the DET, will be used to estimate the Ne,�

from S(0, k), we can show that the LTI nature of the ef-
fective model makes the computations easier. In fact, the
transfer function of the channel becomes

H̃(ωk) =
L−1∑

�=0

α�e
−jωkNe,� (7)

and its inverse Fourier transform gives

h̃(n) =
L−1∑

�=0

α�δ(n − Ne,�) (8)

Both of these functions are special cases of H(n, ωk) and
S(Ωs, k). In fact, h̃(n) coincides with S(0, n) as defined
in equation (4). When the channel noise η(n) and the jam-
mer j(n) are considered in the received signal, the effective
shifts {Ne,�} found before are only estimates, but can be
used to detect the data bit d that was sent when the noise
and the jammer have relatively low power. If the estimated
effective shift is N̂e, corresponding to the shortest path (pre-
sumably having the smallest attenuation), and using the cir-
cular shift orthogonality of the g(n), we obtain the follow-
ing decision variable

ρ =
N−1∑

n=0

r(n)
g∗(n − N̂e)

α̂e

= d
α�0

α̂e
+

N−1∑

n=0

[η(n) + j(n)]
g∗(n − N̂e)

α̂e

when N̂e coincides with one of the actual effective values
Ne,�. Considering the channel noise is zero mean, and the
jammer has a small average, then the expected value of the
decision variable is E[ρ] = dα�0/α̂e, which is close to d.

4. EXPERIMENTAL RESULTS

We tested the performance of our method by using Monte
Carlo simulations. The wireless channel is simulated ran-
domly, i.e, the number of paths varies between 1 ≤ L ≤ 5,
the delays, Ni and the doppler frequency shift 0 ≤ ψ i ≤
ψmax of each path are chosen randomly. Input data is mod-
ulated by K = 100 sub-carriers. Assuming a bandwidth
of 500KHz, frequency spacing between the sub-carriers is
F = 5KHz. Estimation of the effective shifts is illustrated
in Fig. 1. For a first set of simulations, the SNR of the
channel noise changes between −4 and 6dB, for normal-
ized Doppler frequency shift less than ψmax = 0.001π and
the BER is calculated in four different ways: 1) No Chan-
nel Estimation, 2) Proposed Method, 3) LTI known chan-
nel model, not considering Doppler effects, and 4) Known
Channel parameters (see Fig. 2). We found that for SNR
values larger than 2 dB, the BER values were close to zero.

In the second set of simulations, we test the effect of
Doppler in the BER calculation. We find that for Doppler
frequencies larger than 0.002π rad the effect is very signif-
icant in the channel estimation (see Fig. 3). Finally, we
tested the robustness of the channel estimation to the pres-
ence of wide-band jammers. Figure 4 illustrates that for
chirp jammers with a jammer to signal ratio bigger than
2 dB, estimation of the channel parameters is significantly
hampered by the jammer.
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Fig. 1. Estimated spreading function S(0, n)

5. CONCLUSIONS

In this paper we show how time-frequency channel estima-
tion can be used in multi-carrier spread spectrum. Using
the effective shift property of quadratic sequences found
here, we are able to develop an estimation procedure and
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Fig. 2. BER vs SNR for ψmax = 0.001π rad.
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Fig. 3. BER vs maximum Doppler for SNR=15 dB.

an appropriate receiver. We illustrate the performance of
our method for different channel noise, Doppler frequency
shift, and jammer levels and find that the results are very
encouraging.
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