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ABSTRACT

Multicarrier transmission over a frequency selective channel im-
plies large differences between the Signal to Noise Ratios (SNR)
on the transmitted tones. For independently detected tones, the
best performance in terms of average bit error rate (BER) is ob-
tained when conditions are equally good on all subcarriers, as
proved by Jensen’s inequality. In the case of blindly precoded Or-
thogonal Frequency Division Multiplexing (OFDM), independent
minimum square error (MSE) detection over each tone and joint-
maximum-likelihood (ML) detections are not equivalent, as tones
are no longer independent. Jensen’s bound, which is reached by
MSE detection, can then be outperformed. However, the compu-
tational complexity of joint-ML detection makes it unrealistic in
practical systems. In this paper we present a low complexity de-
tection scheme based on Bernoulli-Gaussian (B-G) evaluation over
the complex field that outperforms Jensen’s MSE bound typically
by several dB, without a need for feedback to the transmitter.

1. INTRODUCTION

Recent work on multicarrier systems ([1], [2]) has produced sev-
eral tools that improve the average BER/SNR performance if sub-
channel conditions present large differences between tones, due to
selective fading and/or colored noise. The average BER perfor-
mance of the system is, considering the BER = f(SNR) function
for a given constellation

BER =
1

N

N∑
n=1

BERn =
1

N

N∑
n=1

f(SNRn) (1)

When the tones SNRs are in the region of cup (∪) convexity of
function f , Jensen’s inequality ([3] [1]) proves that in the case of
independently demodulated tones

BER ≥ f

(
1

N

N∑
n=1

SNRn

)
(2)

with equality if all SNRs are equal. The exact boundary of the ∪
convexity region depends on the constellation and can be found an-
alytically or numerically. Adaptive power distribution, and the use
of ‘minimum BER’ precoders, have been shown to significantly
improve performance. Both schemes allow one to obtain equal
conditions (SNR) on each subchannel, hence reaching Jensen’s
bound on BER when tones are detected using equlizing technics
(like MSE). Power allocation requires feedback to the transmitter,
which is not always doable in practice. It also dramatically mod-
ifies the spectrum of the transmitted signal, which may produce
power regulation issues. Blind precoders do not require feedback,
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Fig. 1. Equivalent block diagram

and can be conditioned to keep the spectrum unmodified, but their
ML detection is prohibitively expensive, often restricting the user
to sub-optimal detection schemes. We derive a low complexity al-
gorithm based on the B-G [4] deconvolution approach, that outper-
forms MSE detection by several dB in the case of dense multipath
channels.

A OFDM system can be viewed, at the receiver, as N paral-
lel subchannels, each of them with its own SNR. We consider the
symbol-space baseband model as shown in Fig. 1.

If there is not inter-symbol interference (ISI) and a zero forc-
ing equalizer is used, the equivalent channel between points a and
b is considered as identity with additive gaussian noise. Each sub-
channel produces a subsequence of data with specific BER, which
is a function of the constellation that is used and the noise con-
ditions over this subchannel. The channel noise is assumed to be
white over the bandwidth of each tone, but is in general colored if
considered at the scale of the whole bandwidth of the system. The
noise at the receiver is globally white if all tones present the same
SNR, which is extremely unlikely for almost all OFDM systems.
For simplicity, all derivations in this paper are based on symbol
space considerations with this model. A more general approach
can be obtained by detailing all components of the channel.

The rest of this paper is organized as follows, section 2 sum-
marizes results on some linear precoders. Section 3 presents the
new scheme and its performance. Finally, section 4 summarizes
the main results and concludes the paper.

2. LINEAR PRECODER

Jensen’s inequality [3] [1] states that performance is optimal for
independently detected tones if all tones present the same SNR, or
equivalently, the same residual noise power. However, this result
is true only if all sub-channels show SNRs that are in the region
of convexity ∪ of the BER vs. SNR function for this constellation
[3] [1]. We define the linear precoder M (square complex-valued
matrix of size NxN ), and the precoding outputs X ′ obtained from
a data vector X (at point a in fig. 1) as:
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X ′ = MX (3)

The precoding matrix M is assumed to be invertible in order to
be able to recover the data (Zero Forcing). The vector of received
signals Y is then defined at point b in fig. 1 as

Y = X ′ + W (4)

where W is the vector of the noise samples. Hence

E
[
WW †

]
= R = diag{σ2

1 , . . . , σ2
N} (5)

The precoding is inverted at the reception, and we get the received
data vector

X̃ = M−1Y = X + M−1W (6)

As detailed in [1], precoders that guarantee that the received noise
correlation matrix has a constant diagonal include normalized Ha-
damard matrices (when they exist), along with DFT and IDFT ma-
trices (which are defined for all N ). We do not detail here the
construction and all properties of the precoder. For details, refer to
listed reference [1]. However, it must be remembered that, in all
cases, the precoder is fixed, does not depend on the channel con-
ditions, and is known at the receiver. It can also easily be checked
that these three types of precoders do not modify the spectrum of
the transmitted signal. We also point out that all three types of ma-
trices are unitary and hence M−1 = M†. The DFT matrix will be
used as the default precoder.

3. BERNOULLI-GAUSSIAN DETECTION

The noise covariance matrix at the reception is obtained from (6).

RM = E
[(

M−1W
) (

M−1W
)†]

= M†RM (7)

Clearly, RM is not diagonal, except if all elements of the diagonal
matrix R are equal. Hence the equalizer-based (MSE or ZF) de-
cision, tone by tone, on the received symbols is not optimal, even
though it reaches Jensen’s bound. The joint maximum likelihood
decision X̂ for a received vector X̃ is the one, among the constel-
lation symbol vectors, minimizing

Lm(X̂) =
(
X̃ − X̂

)†
R−1

M

(
X̃ − X̂

)
(8)

This is obtained by straightforward derivation of the log-likelihood
function assuming complex circular noise. We point out here that
RM and R−1

M can be built from the measured SNRs on each tones
(which can be obtained at no extra cost while computing the FEQ
F coefficients) and the knowledge of M. We thus get

R−1
M = M†R−1M (9)

A brute force solution to the minimization of (8) is not real-
istic, as the number of possibilities is P N where P is the number
of symbols in the constellation. Algorithmic solutions like sphere
decoding reduce this complexity a lot, but not enough for practical
implementation. We now restrict ourselves to the case of QAM.
The objective is to derived a procedure that reaches or approxi-
mates the result of extensive testing, without the complexity of
complete joint minimization. If, in each tone of the received vec-
tor X̃ , we limit the tests to the 4 symbols surrounding the (soft)
received point X̃(n) (somehow like CHASE algorithm [5]), the

total number of possible combinations drops down to 4N , which
is still challenging and not doable in practical systems as soon as
N is not trivially small. In order to further reduce the complex-
ity of the test procedure, an iterative algorithm avoiding extensive
testing has to be devised.

3.1. One-tone perturbation

(8) develops into the ’likelihood metric’ for an estimated vector
X̂0

Lm(X̂0) = X̃†RM
−1X̃ − 2Re

[
X̂†

0RM
−1X̃

]
+ X̂†

0RM
−1X̂0

(10)
Where Re stands for ’real part’. If we wish to test a one-tone per-
turbation on X̂0, then we note

∆n =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
...
δ
...
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(11)

where the subscript n means that δ = δre + jδim is the nth

component of the Nx1 vector ∆n. Replacing X̂0 by X̂1 = X̂0 +
∆n let

Lm(X̂1) = Lm(X̂0) + L∆n (12)

with

L∆n = 2Re

[(
X̂0 − X̃

)†
RM

−1∆n

]
+ ∆†

nRM
−1∆n (13)

The perturbation ∆n hence reduces the likelihood metric if

L∆n < 0 (14)

Knowing that the perturbation ∆n has only one non-zero com-
ponent, we obtain

b = ∆†
nRM

−1∆n = |δ|2RM
−1
n;n = |δ|2α (15)

with

α =
1

N

N∑
n=1

1

σ2
n

(16)

This result on α is guaranteed when any one of the previously men-
tioned precoding/decoding matrices is used. α is a constant. In the
case of a regularly spaced constellation, such as standard normal-
ized QAM, δre and δim ∈ {0;±2} (see Fig. 2 for an example).
Define the Nx1 vector

A =

[(
X̂0 − X̃

)†
RM

−1

]T

= Are + jAim (17)

the other term of (13) is

2Re

[(
X̂0 − X̃

)†
RM

−1∆n

]
= 2Re [δA(n)]

= 2 (δreAre(n) − δimAim(n))

(18)

The modification ∆n is of interest if and only if
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Fig. 2. Example of tested 4-PSK in the case of 16-QAM

2 (δreAre(n) − δimAim(n)) +
(
δ2

re + δ2
im

)
α < 0 (19)

To get the most negative metric modification, extensive test-
ing of all combinations of real and imaginary parts (δre, δim ∈
{0,±2}), and independent testing on those two parts let the same
result. Thus (19) splits without loss of performance into{

2δreAre(n) + δ2
reα < 0

−2δimAim(n) + δ2
imα < 0

(20)

Those separate evaluations reduce the total number of tests to
be performed, hence the global complexity. The improvement can
be tested independently on each tone (from (19) and (20) ), thus
removing the need for joint optimization.

3.2. Detection algorithm

We now develop the simplified B-G detection algorithm of complex-
valued signals. We assume Gray mapping and ±1 bit labeling. Us-
ing Gray mapping (usually done as it limits the BER), allows us to
consider that any 4-point neighborhood surrounding X̃ is strictly
equivalent to a 4-PSK. Labeling bits with ±1 instead of {0; 1} will
allow to simplify test expressions.

We set the initial detected vector to X̂0 = MSE
[
X̃

]
. That

is, we decide, on each tone, on the closest symbol. This basic
detection scheme is the one reaching Jensen’s bound [1]. At this
point, if the used constellation is larger than 4-PSK, we consider
only the 4-PSK surrounding X̃ . Fig.2 illustrates this procedure, in
the case of a 16-QAM. We note bre(n) and bim(n) the bits coded
respectively on the real and imaginary parts of the neighboring 4-
PSK, n ∈ {1 . . . N}. Fig.2 shows one tone using 16-QAMs. The
considered 4-PSK to be tested is the one in the second quadrant
(denoted by the dashed box). In this example, the received signal
X̃(n) will create an MSE estimate X̂0(n) = −3 + 3j in the 16-
QAM, which corresponds to bre(n) = −1 and bim(n) = 1 in the

tested 4-PSK. In the case of a 16-QAM, only 2 of the 4 coded bits
are considered for modification.

The conditions on the permutation of bre(n) and bim(n) are,
once A is computed, obtained directly from (20) by inspection
of the possible cases. If bre,im(n) = 1, then the only reasonable
perturbation of the (Re,Im)-part of this tone is δre,im = −2. Con-
versely, if bre,im(n) = −1, then δre,im = 2 is the only perturbation
that allows to stay in the considered 4-PSK. The permutation of
the detected bits occurs if:

{
bre(n) = −bre(n) iif Are(n)bre(n) > α

bim(n) = −bim(n) iif − Aim(n)bim(n) > α
(21)

We used the hypothesis that constellation points are spaced
like in Fig.2. Using a different constellation may result in minor
modification of this test. This is a simple threshold test. After
updating all tones, we get the new estimate X̂1. In this procedure,
A is never updated, as there is no true joint detection.

The algorithm can be run iteratively, after updating A using

Ai+1 =

⎛
⎜⎝X̂i +

N∑
n=1
n∈D

∆n − X̃

⎞
⎟⎠

†

RM
−1 (22)

D is the set of the perturbations that reduce the likelihood cost
function. However, the additional gain is typically low compared
to the benefit of the first iteration, as the algorithm saturates quickly.
The steps of the algorithm, in the case of QAM, are the following:

1. Compute R−1
M as in (9), compute α as in (16)

2. Compute X̂0 = MSE
[
X̃

]
3. Compute A as in (17) (or (22) after the first iteration)

4. In the case of constellation greater than 4-PSK, isolate the
4-PSK to be tested

5. Determine bre and bim

6. Perform (21) for n = 1 . . . , N , obtain X̂1

7. If one more iteration is required, X̂0 = X̂1, goto step 3

Eq. (21) shows that the detection rule is simpler than the ini-
tial negative log-likelihood minimization function (8). In (21), 4N
tests are performed before a new matrix multiplication is required
(only estimating vector A requires it). Steps 3 of the algorithm is
the most expensive in terms of number of operations. Computing
R−1

M and α (step 1) happens only once for a given channel, so its
contribution to global complexity depends on the channel coher-
ence time.The remaining steps of the algorithm present relatively
low complexity.

When all the residual noise variances are equal (σ2
n = c ∀n),

R−1
M reduces to a diagonal matrix (from (9)). In this case, there is

no gain at all, as MSE, B-G and even ML detections are equivalent.
Hence, the detection method can be selected at the receiver once
the SNRs have been estimated.

3.3. Example

As an example, we show the performance over one of the indoor
wireless channels prototyped by the IEEE group for Ultra Wide-
Band systems (802.15.3a) [6]. Fig. 3 shows the residual noise vari-
ances on each tone without precoding, normalized by the largest
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variance. Fig. 4 shows the performance obtained without precoder,
and with precoder and MSE (Jensen’s bound) or B-G detections
(one iteration). In this plot, the SNR is defined as SNR = σ2

sα. In
this example, fifty 4-PSKs are combined (N = 50). As predicted
by Jensen’s inequality, precoding improves the performance sub-
stantially in the region of ∪ convexity of the BER vs. SNR func-
tion. Additionally, B-G detection increases performance by about
2 dB for a BER = 10−5, in one iteration. Fig.5 presents a close-up
of Fig. 4, also showing the performance obtained with 2 and 5 it-
erations of the B-G algorithm. As expected, the extra performance
obtained with additional iterations shrinks very fast. In this case,
there is no need for more than 2 iterations.

4. CONCLUSION

Starting from the joint maximum likelihood detection of blindly
precoded OFDM, we derived a permutation based iterative algo-
rithm that improves the MSE detection with low complexity. This
algorithm outperforms the performance of independently decoded
systems typically by several dB over multipath channel, making
this approach a good candidate to improve the performance of
OFDM systems in difficult channel conditions. It can be noticed
in Fig. 4 that performance is increased even outside of the region
of convexity ∪ of the BER vs. SNR function. For low SNR, inde-
pendent detection (Jensen’s bound) is not as good as unprecoded
transmission, while B-G dectection still creates an improvement.
However, the exact boundary of the region of improvement is not
known at this point and determining it would be of great inter-
est. Low complexity implementation of the algorithm could lead
to further optimization of each step. Ongoing work includes the
generalization of this approach to any type of channel and pre-
coder.
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Fig. 3. Normalized residual noise variance
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