
Symbol Detection with Time-varying Unknown Phase by
Expectation Propagation

Tao Wei, Yufei Huang
Department of Electrical Engineering

The University of Texas at San Antonio
San Antonio, TX 78249 USA

twei@lonestar.utsa.edu, yhuang@utsa.edu

Yuan Qi
MIT Media Lab

Cambridge, MA, 02139 USA
yuanqi@media.mit.edu

Abstract— In digital communications, symbol detection in phase noise
is an important topic that has been discussed in many papers under
different conditions. In this paper, we consider symbol detection with
time-varying unknown phase. We propose a solution based on expectation
propagation (EP). EP is an extension to belief propagation and developed
in machine learning. We point out that the developed EP solution can
be considered as iterated extended Kalman smoother (EKS). However, a
crucial step of recycling the likelihoods in EP makes possible the further
improvement over EKS. We show in the simulation that EP can produce
very good performance with relatively low complexity. Since it produce
soft information, the EP solution can be readily applied to iterative
detection of coded systems.

I. INTRODUCTION

Reliable signal detection is a fundamental task in digital com-
munications. When performing detection at the receiver, phase shift
due to channel delays must be compensated. The problem becomes,
however, very challenging when phase changes dynamically in time,
a very realistic scenario in communications. The difficulties of the
problem rise from the nonlinear, time-varying nature of the phase
model and an exponentially increasing detection space. To address the
difficulties, solutions based on the extended Kalman filter (EKF)[1],
the unscented Kalman filter (UKF)[2], and other suboptimal adaptive
estimation techniques have been reported in the literature. However,
a decision-directed scheme is often adopted for symbol detection,
whose performance is limited by error propagation.

Recently, more advanced techniques were proposed for the solution
of the problem. Among them, particle filtering [3] and belief propaga-
tion (BP) on factor graph [4], [5] are very appealing. However, despite
the near-optimum performance, the complexity of particle filtering
can be very high. Although its complexity can be affordable, BP is,
however, developed for discrete random variables or the continuous
variables whose distributions are in the exponential family, such as
Gaussian distribution.

In this paper, we develop a novel solution based on expectation
propagation (EP) [6]. EP is an extension to belief propagation (BP)
and is specially developed for distributions outside of the exponential
family. EP has relatively less complexity and may produce compa-
rable performance to particle filtering. Moreover, EP is potentially
more powerful and applicable to wider problem than BP. We provide
in this paper detailed derivations of the EP solution and point out
that the EP solution can be considered as an extension to extended
Kalman smoother (EKS) [7]. However, a crucial step of recycling the
likelihood makes possible the improvement over the EKS. We also
show in the simulation that EP can produce very good performance
with relatively low complexity. Since it produce soft information, the
EP solution can be applied to iterative detection of coded systems.

The remaining of the paper is organized as follows. In section II,
system model is formulated and the concerned problem is presented.

The background of EP is described in section III. In section IV,
solution based on EP is derived in detail. Simulations are included
in V and conclusion is drawn in section VI.

II. PROBLEM FORMULATION

Consider detection of K symbols from a block of K observations.
We assume the symbols, when transmitted through communication
channels, undergo time-varying phase shift. At time k, the observation
yk can be modeled by a state space representation as

θk = θk−1 + wk (1)

yk = skejθk + nk (2)

where θk is the time-varying phase, whose dynamics is modeled by
a random walk process (1), wk ∼ N (0, σ2

w) is the driving noise of
the phase process, sk is the data symbol generated from an alphabet
set A of size M , and nk ∼ N (0, σ2

n) is complex white Gaussian
noise. Our objective is to detect sk from a block of observations
with, however, time-varying unknown phase. In what follows, we
use subscript 1:K to denote a collection of variables from k = 1 to K
and subscript 1:K,−k to denote a collection of variables from k = 1
to K except the kth.

From a Bayesian perspective, the a posteriori probabilities (APP)
p(sk|y1:K) ∀k must be calculated for detection. Due to the unknown
phase, the APPs are obtained by marginalizing the joint posterior
distribution as follows,

p(sk|y1:K) =
∑

s1:K,−k

∫
θ1:K

p(s1:K , θ1:K |y1:K)dθ1:K (3)

There are two major difficulties in (3). First, since yk is nonlinear
in θk, the high dimensional integration cannot be solved analytically.
Second, the size of summation increases exponentially with k, which
makes the problem NP hard. Suboptimum approaches must be
adopted as a result. We show in the following how EP can be used
for the solution.

III. BACKGROUND ON EXPECTATION PROPAGATION

Consider K independent observations generated from a statistical
parametric model yk = f(θ, nk), where f(·) is a parametric function,
θ the unknown parameter, and nk random noise. Given the prior
distribution p(θ), our objection is to obtain the posterior distribution
p(θ|y1:K). Except for limited cases where, for instance, f(·) is linear
and nk is Gaussian, the posterior distribution cannot, however, be
derived analytically. Instead, EP can be applied to approximate the
desired posterior distribution.

EP consists of two major parts: initial density estimation and
iterative refinement. In the first part, an initial estimate on p(θ|y1:k) is
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constructed by sequentially incorporating the observations from k =
1 to K using ADF. Note that the order is imposed for convenience
of our composition and would be natural for dynamic systems, but
it is not necessary in EP nevertheless. To see the procedure in detail,
we assume that, at step k − 1, we have obtained an approximation
of p(θ|y1:k−1), say, q(θ|y1:k−1). We, however, restrict q(θ|y1:k−1)
to be from the exponential family, a key requirement of EP when
approximating posterior distribution. This is because that, with a
distribution from the exponential family, only a fixed number of
expectations (the sufficient statistics) needs to be propagated. Now,
to incorporate the new likelihood p(yk|θ) at step k and to obtain
the new approximation q(θ|y1:k) from p(θ|y1:k), we start from the
following relationship

p(θ|y1:k) =
p(yk|θ)p(θ|y1:k−1)

Z

≈ p(yk|θ)q(θ|y1:k−1)

Z
= q̂(θ|y1:k) (4)

where Z is the normalizing constant. Since q̂(θ|y1:k) may not be in
the exponential family, we need to project q̂(θ|y1:k) to the exponential
family distribution to obtain the required approximation q(θ|y1:k).
Based on the criterion that the Kullback-Leibler (KL) distance
between the original and the projected is minimized, it is shown in [6]
that the projection is equivalent to moment matching. For example,
if q(θ|y1:k) is chosen to be Gaussian, then the moment matching
matches the mean and variance of q(θ|y1:k) to those of q̂(θ|y1:k).
When f(·) is not linear, the moments of q̂(θ|y1:k) cannot be ob-
tained analytically. Techniques including quadratic approximation and
unscented transformation can be used instead to approximate these
moments. Note, with q(θ|y1:k) and q(θ|y1:k−1), the corresponding
approximated likelihood function can be also obtained as

q(yk|θ) ∝ q(θ|y1:k)

q(θ|y1:k−1)
(5)

When the above steps are finished at k = K, we obtain an initial
estimate on p(θ|y1:K).

In the second part of EP, refinement on the approximation
q(θ|y1:K) is performed in an iterative fashion. In each iteration,
refinement is also performed sequentially from 1 to K by recycling
the K likelihoods. In specific, at the kth step, two sub-steps are
included

1) Removal of the approximated likelihood: The approximated
likelihood is removed according to

q(θ|y1:K;−k) ∝ q(θ|y1:K)

q(yk|θ)
(6)

where y1:K;−k represents the collection of the observations
except yk.

2) True likelihood recycling and moment matching: The true
likelihood p(yk|θ) is then combined with q(θ|y1:K;−k) by the
same fashion as in (4) and the refined approximation q(θ|y1:K)
is obtained through moment matching.

After one sweep from k = 1 to K, this refinement iterates again
until the convergence of q(θ|y1:K) and EP outputs the converged
q(θ|y1:K) as the final approximation to p(θ|y1:K).

IV. SYMBOL DETECTION IN TIME-VARYING PHASE NOISE WITH

EXPECTATION PROPAGATION

For our problem, the objective is to calculate the marginal a
posteriori probabilities (APPs) p(sk|y1:K) ∀k. EP approximates

the desired APPs indirectly by approximating the joint density
p(sk, θk|y1:K) ∀k first.

As discussed in section III, EP includes two parts. In the first
part, initial estimates of p(sk, θk|y1:K) ∀k are formulated by se-
quentially incorporating the likelihoods. For the concerned dynamic
system, since p(sk, θk|y1:K) is a smoothing density, an estimate is
conveniently calculated through a forward (filtering) and a backward
(smoothing) process. However, the moment an estimate on a smooth-
ing density of, say, sk is derived, the second part of EP should
be performed right away to refine the estimate. This is because in
dynamic systems we deal with the different unknowns at different
k. As a result, the refinement part is intertwined in the smoothing
process.

Let us first discuss the filtering process, suppose at k − 1 that
we have obtained q(sk−1|y1:k−1) and q(θk−1|y1:k−1) as the ap-
proximation of p(sk−1|y1:k−1) and p(θk−1|y1:k−1), respectively. In
particular, q(sk−1|y1:k−1) is a discrete distribution defined on the
symbol space A and q(θk−1|y1:k−1) is a Gaussian distribution, i.e.,

q(sk−1|y1:k−1) = Discrete(rk−1,1, · · · , rk−1,M )

q(θk−1|y1:k−1) = N (θ̄k−1|k−1, σ
2
θk−1|k−1

).

Now we want to obtain the estimates of p(sk|y1:k) and p(θk|y1:k)
from approximating p(sk, θk|y1:k). For a uniform prior of p(sk) =
1/M , p(sk, θk|y1:k) can be expressed as

p(sk, θk|y1:k) ∝ p(yk|sk, θk)p(θk|y1:k−1). (7)

To compute (7), we first calculate the predict density p(θk|y1:k−1)
as

p(θk|y1:k−1) =

∫
p(θk|θk−1)p(θk−1|y1:k−1)dθk−1

≈
∫

p(θk|θk−1)q(θk−1|y1:k−1)dθk−1

= N (θ̄k−1|k−1, σ
2

θk|k−1) (8)

where
σ2

θk|k−1 = σ2
θk−1|k−1

+ σ2
wk

. (9)

Next, we calculate the likelihood p(yk|sk, θk). We observe, however,
that unless yk is linear in θ, the moments of p(sk, θk|y1:k) cannot be
calculated analytically. Thus, linearization on the model over θ must
be performed. In this paper, we adopt the quadratic approximation
and the likelihood after linearization can be expressed as a Gaussian
distribution

p(yk|sk, θk) ≈ N (ynew
k |ȳk, σ2

yk
) (10)

where

ynew
k = yk − skg(θ̄k−1|k−1) (11)

ȳk = skGkθ̄k−1|k−1 (12)

σ2
yk

= |sk|2|Gk|2(σ2
θk−1|k−1

+ σ2
ωk

) + σ2
n (13)

Gk =
∂g(θk)

∂θk
|θk=θ̄k−1|k−1

= jejθ̄k−1|k−1 (14)

g(θ̄k−1|k−1) = ejθ̄k−1|k−1 . (15)

As a result, an estimate q̂(sk, θk|y1:k) on the joint posterior density
p(sk, θk|y1:k) can be derived analytically from (7) based on (8) and
(10), i.e.,

q̂(sk, θk|y1:k)

∝ N (ynew
k |ȳk, σ2

yk
)N (θk|θ̄k−1|k−1, σ

2
θk−1|k−1

+ σ2
wk

).(16)
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Marginalizing (16) over θk, we obtain an estimate on p(sk|y1:k) as

rk,m = q̂(sk = am|y1:k)

=

∫
θk

q̂(sk = am, θk|y1:k)dθk

=
N (yk|amGkθ̄k−1|k−1, σ

2
yk

)

Z
∀am

(17)

where
Z =

∑
sk∈A

N (yk|ȳk, σ2
yk

). (18)

Notice that q̂(sk|y1:k) is already in the exponential family and no
projection is thus needed. We then obtain our desired estimate on the
APP at step k as

q(sk|y1:k) = q̂(sk|y1:k) = Discrete(rk,1, · · · , rk,M ) (19)

Next, we calculate an estimate on p(θk|y1:k), which is needed for
computations at the k + 1th step. Marginalizing (16) alternatively
over sk, we obtain an estimate as

q̂(θk|y1:k) =
∑

sk∈A
q̂(sk, θk|y1:k)

=
∑

sk∈A
q̂(θk|sk, y1:k)q(sk|y1:k)

=

M∑
m=1

N (θk| θ̄
(m)

k|k , σ̄2
θk|k )rk,m (20)

where

θ̄
(m)

k|k = θ̄k−1|k−1 + Kk(yk − amg(θ̄k−1|k−1)) (21)

σ̄2
θk|k = σ2

θk|k−1 − KkamGkσ2
θk|k−1 (22)

Kk = σ2
θk|k−1G∗

ka∗
mσ−2

yk
(23)

Note that the current estimate (20) is a mixture Gaussian distribution,
which is not in the exponential family, and therefore projection
must be performed. As a result of moment matching, we obtain an
approximation of q̂(θk|y1:k) by a single Gaussian distribution

q(θk|y1:k) = N (θk| θ̄k|k, σ2
θk|k ), (24)

where

θ̄k|k =

M∑
m=1

rk,mθ̄
(m)

k|k (25)

σ2
θk|k = σ̄2

θk|k − θ̄2
k|k +

M∑
m=1

rk,m(θ̄
(m)

k|k )2. (26)

Now, we obtained the desired filtering posterior distributions at k.
As the last part of the filtering process, we compute the estimated
likelihood functions as

q(yk|sk, θk) = q(yk|θk)q(yk|sk)

= Z
q(θk, |y1:k)

q(θk|y1:k−1)

q(sk, |y1:k)

q(sk|y1:k−1)
(27)

and obtain

q(yk|θk) ∝ N (θk|µ̂k, λ̂k) (28)

q(yk|sk = am) ∝ r̄k,m (29)

where, to avoid numerical problems, λ̂k and µ̂k are indirectly
computed by a natural parameterization of the exponential family

µk = λ̂−1
k µ̂k = (σ2

θk|k )−1θ̄k|k − (σ2
θk|k−1

)−1θ̄k−1|k−1(30)

λk = λ̂−1
k = (σ2

θk|k )−1 − (σ2
θk|k−1

)−1 (31)

r̄k,m =
rk,m

rk−1,m
∀m (32)

Next, in the smoothing process and at k, without explicit derivation,
we first obtain the estimates on the smoothing posterior distributions
from Kalman smoothing [8]

q(θk|y1:K) = N (θk| θ̄k|K , σ2
θk|K ) (33)

q(sk|y1:K) = Discrete(rs
k,1, · · · , rs

k,M ) (34)

where

Jk = σ2
θk|k (σ2

θk|k−1
)−1 (35)

θ̄k|K = θ̄k|k + Jk(θ̄k+1|K − θ̄k|k) (36)

σ2
θk|K = σ2

θk|k + J2
k(σ2

θk+1|K − σ2
θk|k ). (37)

Then, the refinement part of EP on q(θk|y1:K) and q(sk|y1:K) is
triggered. As discussed in section III, two steps are involved. In the
first step, we remove the estimated likelihoods in (28) and (29) from
the smoothing densities to obtained

q(θk|y1:K,−k) = N (θk| θ̄−k|K , σ2
θ−k|K ) (38)

q(sk|y1:K,−k) = Discrete(rs
−k,1, · · · , rs

−k,M ) (39)

where

σ2
θk|K = ((σ2

θk|k )−1 − λk)−1 (40)

θ̄−k|K = σ2
θk|K ((σ2

θk|k )−1θ̄k|k − µk) (41)

rs
−k,m = rk,m/r̄k,m. (42)

Then, in the second step of the refinement, the true likelihood is
incorporated and projection is performed to obtain an new estimation
on the smoothing densities. The procedure is the same as in the
filtering processes and we omit the detail. When the smoothing
process is finished, more iterations of filtering and smoothing-
refinement are carried out until the estimated smoothing posterior
distributions converge. We, however, want to point out that in the
filtering process of later iterations, only the estimated likelihoods
from the previous smoothing process are incorporate and therefore
linearization is no longer needed and the moments of the new
estimates can be conveniently calculated by

σ2
θk|k = ((σ2

θk|k−1)
−1 + λk)−1 (43)

θ̄k|k = σ2
θk|k (µk + (σ2

θk|k−1)
−1θ̄k−1|k−1) (44)

rk,m = r̄k,mrs
−k,m (45)

The algorithm of EP for our problem can be summarized in the
following:

1. Initial estimate

• For k = 1 : K

– Get the predictive density of θk from (9)
– Moment matching via (25) to (26)
– Obtain the estimated likelihood via (30) to (32)

2. Loop by increasing i until the maximum number of iteration is
reached or convergence happens:

• For k = 1 : K (Skip on the first iteration)
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TABLE I
NUMBER OF ITERATIONS AT σ = 0.01 and 0.02 WITH BLOCK DATA

LENGTH K=5000.

SNR (dB) 0.5 1 1.5 2 2.5 3 3.5 4
# of iteration (σ = 0.01) 9 7 7 6 6 6 6 5
# of iteration (σ = 0.02) 9 8 8 7 7 7 7 6

– Get the predictive density of θk from (9)
– Incorporate the true likelihoods into posterior distribution

via (43) to (45)

• For k = K : -1 : 1

– Kalman smoothing via (35) to (37) when k < K
– Delete old likelihood via (40) to (42)
– Moment matching via (25) to (26)
– Obtain new likelihood for the next refinement via (30) to

(32)

In the very end, when p(sk|y1:K)s are obtained, the maximum a
posteriori detection can be performed as

ŝk = arg max
sk∈A

p(sk|y1:K).

It is interesting to see that the initial estimate process is very
similar to a extended Kalman smoother (EKS). However, EP differs
from EKS with a refinement process that recycles the likelihood. The
refinement process enables continuous improvement on the global
approximation whenever a local improvement is produced and such
improvement will not stop until the globally best solutions are
reached. As a result, EP can produce much better approximations
than EKS.

V. SIMULATION RESULTS

We performed simulations to demonstrate the performance of the
proposed EP detection. In our simulation, the data symbols were
transmitted by blocks with the block length K = 5000. The data
were differentially encoded to combat phase ambiguity. We also
assumed the unit energy for symbols and thus the signal-to-noise
ratio (SNR) is calculated by −10 log σ2

n. Bit-error-rates (BERs) of
different detectors were calculated at different SNRs as an evaluation
of performance. In particular, to obtain a desired BER, we require at
least 50 errors be collected.

First, in Figure 1, we plotted the BER vs. SNR for EP, differential
detection, and detector with known phase when symbols are BPSK
modulated. The BER of the detector with known phase is served as
the lower bound. In this experiment, we set σw = 0.05. We see
clearly that the performance EP is better than differential detection
and almost overlaps with that of the detector with known phase. In
Figure 2, we tested QPSK modulation. We can see the performance
of EP is close to the performance of known phase, but is much better
than differential detection especially at high SNR.

Next, we explore the convergence of EP by examining the number
of iterations at different phase noise variance. We presented the results
in Table I for σw = 0.01 and 0.02. We see that, overall, EP converges
in less than 10 iterations. In addition, we observe that the number of
iterations decreases with the increase of SNR and/or phase variance.
Since high SNR region is of more interest for practical transmission,
the reduced complexity of EP at high SNRs is a potentially attractive
feature.
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Fig. 1. Plots of BER vs. SNR for BPSK.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

SNR vs. BER at σ=0.05

EP
Differential Detection
Known θ

Fig. 2. Plots of BER vs. SNR for QPSK.

VI. CONCLUSIONS

In this paper, we presented a novel solution based on expectation
propagation to symbol detection in the presence of dynamic phase
change. We demonstrated through simulation very good performance
of EP and its relative small complexity.
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