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Abstract—We propose in this paper a novel soft-input-soft-
output (SISO) multiuser detector for synchronous CDMA sys-
tems. The detector is called the belief-directed sequential proba-
bilistic data association detector (BD-SPDAD). The BD-SPDAD
is developed based on a general framework of the probabilistic
data association detector (PDAD) proposed in [1]. However,
novel extensions to the general framework are proposed for
the BD-SPDAD, which results in a low complexity sequential
implementation. In specific, the complexity of the BD-SPDAD is
reduced from O(K3) of the original PDAD to O(K2), where
K is the number of users in the system. Moreover, we show
through simulation that the performance of the BD-SPDAD is
comparable and even better than the original PDAD especially
at high signal-to-noise regions.

I. INTRODUCTION

Multiuser detection (MUD) for CDMA systems [2] has
received a great deal of attention after it was introduced in
the eighties. The popularity is largely due to its potential for
increasing the capacity of systems. Since optimum MUD is ex-
ponential in complexity, numerous suboptimal detectors have
been developed with different trade-offs between complexity
and performance [3], [4], [5].

Recently, in [6], a very promising iterative soft detector
called probabilistic data association detector (PDAD) was
proposed based on probabilistic data association (PDA), a
very popular approach for multiple target tracking in cluttered
environment [7]. In [8], for comparison of many popular
suboptimal detectors including the decision feedback detector,
coordinate descent, quadratic programming with constraints,
semi-definite relaxation, PDAD, branch and bound, and etc.,
the PDAD stands out to be the best in terms of its performance
and complexity. Another appealing advantage of the PDAD
is that it provides soft (probabilistic) information about the
unknown data bits, which thus makes it naturally applicable
to turbo multiuser detection of coded systems.

In one of our recent work [1], we proposed a generalized
framework for the PDAD. Based on this framework, some
important insights were observed about the original PDAD and
connections were able to draw between the popular conditional
linear minimum mean squared error (CLMMSE) SISO MUD
[9] and the generalized PDAD.

As another extension to the general framework, we propose,
in this paper, a reduced complexity algorithm procedure called

sequential PDAD (SPDAD). In the SPDAD, the original mul-
tiuser system is transformed into several independent multiuser
subsystems and the PDAD is applied to each subsystems yet
using the information obtained from other subsystems as the
priors. An important approach is also proposed to avoid double
counting the likelihoods. A specific algorithm called belief-
directed SPDAD (BD-SPDAD) is presented, which is designed
based on whitened matched filter outputs. The complexity of
the BD-SPDAD is reduced from O(K3) of the original PDAD
to O(K2), where K is the number of users in the system.
Moreover, we show through simulation that the performance
of the BD-SPDAD is comparable at low to mid signal-to-noise
(SNR) range yet is much better than the original PDAD at high
SNR region.

The remaining of the paper is organized as follows. In
section II, system model of multiuser detection is formulated
and the concerned problem is presented. The background of
generalized PDAD is described in section III. In section IV,
the algorithm of the BD-SPDAD is derived. Simulations are
included and conclusion is drawn in section V.

II. PROBLEM FORMULATION

Consider a synchronous CDMA system with a chip rate
K users [2]. The matched filter output y can be expressed
according to

y = RAb + n (1)

where y = [y1 y2 · · · yK ]T (T stands for vector or matrix
transposition), A = diag{A1, · · · , AK} is the diagonal matrix
of the channel state information, b = [b1 b2 · · · bK ]T is the
user symbol vector, n is zero mean Gaussian noise with the
covariance matrix equal to σ2R, and R denotes the cross-
correlation matrix of the signature waveform.

Let us assume that R, A, and σ2 are known to the receivers,
and the a priori probability of each user’s data symbol, i.e.
p(bk)∀k, are also available. Our objective is perform multiuser
detection given the matched filter output y.

III. THE GENERALIZED PDAD

We review in this section the generalized PDAD and sum-
marize our previous results. Without loss of generality, let
us assume the data signals are antipodally modulated, i.e.,
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b ∈ {−1, 1}K. The goal of PDAD is to obtain the a posteriori
probability p(bk|y) ∀k. Since

p(bk|y) =
p(y|bk)p(bk)∑
bk

p(y|bk)p(bk)

p(bk|y) can be obtained easily if p(y|bk) is known. However,
to obtain p(y|bk), marginalization must be carried out as

p(y|bk) =
∑
b−k

p(y|b)p(b−k) (2)

where b−k represents a (K − 1) × 1 signal vector that
contains all data signals except bk. Apparently, (2) is
of complexity exponentially increasing with K and thus
computationally infeasible for large K. Note the high
complexity rises from (2) being a mixture Gaussian. One
simplification is however possible by performing data
association, i.e., approximating the mixture by a single
Gaussian with mean and variance matched to the mixture.
But such approximation is still quite rough. To refine it, the
PDAD employs an iterative scheme. The canonical algorithm
of the generalized PDAD can be described as follows:

Generalized PDA Detector
1) Initialization: Set Pk = p(bk = 1)∀k and calculate the

log-prior ratio (LPrR) as

λLPrR(bk) = ln
p(bk = 1)

p(bk = −1)
∀k; (3)

2) For k = 1 to K

• Interference Cancellation: Compute ỹk = Wky,
where Wks are linear filters to be defined;

• Data Association: Compute µk and Σk by

µk = Wkmk (4)

and
Σk = WkQkW�

k (5)

where

Qk =
∑
i�=k

A2
i Reie�i Rσ2

bi
+ σ2R (6)

mk =
∑
i�=k

AiReib̃i (7)

σ2
bi

= V AR[bi] = 4Pi(1−Pi), b̃i = E[bi] = 2Pi −
1, and ei is a K × 1 vector whose only nonzero
element is the ith element and is 1.

• Probability update: Calculate the log-likelihood
ratio (LLR) and log-posterior ratio (LPR) as

λLLR(bk) = 2Ake�k RW�
k Σ−1

k (ỹk − µk) (8)

and

λLPR(bk) = λLLR(bk) + λLPrR(bk). (9)

Update Pk by

Pk =
1
2
{
1 + tanh

[1
2
λLPR(bk)

]}
. (10)

3) Convergence testing: If Pks converge, go to 4. Other-
wise, go back to 2.

4) Detection: Detect bks according to

b̂k =
{

1 if Pk ≥ 0.5
−1 otherwise (11)

Under the above general framework, we examined in [1] two
different cases on the choice of the interference cancellation
(IC) filter Wk. In the first case, we examined invertible Wks,
which include Wk = IK , Wk = A−1R−1, and Wk = (R+
σA−2)−1, and they correspond to applying no interference
cancellation, a decorrelating detector, and a LMMSE detector
in the interference cancellation step of the general PDAD
algorithm, respectively. We showed that in this case no Wk

is needed for the calculation of λ(bk) and thus any choice
other than Wk = IK or any interference cancellation step
will be computationally redundant. Since the original PDAD
in [6] corresponds to the case for Wk = A−1R−1. This result
indicates that the original PDAD is computational inefficient.
In the second case, we examined IC by the CLMMSE, i.e.,

Wk
�
= W̄k = Ake�k R(RVkR + σ2R)−1 with Vk =∑

i�=k A2
i σ

2
bi
eie�i + A2

keke�k . We showed that in this case the
LLR is the same as that of the popular SISO MUD [9]. Since
the SISO detector performs only one iteration for k = 1 to K,
we can consider the SISO detector as one iteration of the gen-
eralized PDAD. Nonetheless, from a PDAD perspective, the
probabilities of bks may not convergence after one iteration.
As a result, the PDAD paradigm suggests that more iterations
until convergence would produce improved soft information
and thus better overall bit-error-rate performance for the turbo
MUD!

We also examine the connection between the above two
choices of Wk. Surprisingly, we show that the two PDAD
algorithms from the two different Wk are equivalent! Since no
IC step is needed in the first choice of Wk, we conclude that
the use of the conditional LMMSE interference cancellation
W̄k in the PDAD is also redundant and so is it in the SISO
MUD!

IV. SEQUENTIAL PDA MULTIUSER DETECTOR

Let us consider an extension to the canonical algorithm of
the generalized PDAD. We choose the IC filter as

Wk = e�k W̃k (12)

where W̃k is a linear filter to be specified and note that Wk is
a scalar. One important restriction on W̃k is that the resulting
filter output ỹk must be independent of ỹi ∀i �= k. From a
probabilistic perspective, we require that the joint likelihood
can be expressed as

p(ỹ1, · · · , ỹK |b) =
K∏

k=1

p(ỹk|b). (13)

As an example, we see that the LMMSE IC filter cannot be a
candidate filter of (12), even though it has the exact structure
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as (12). This is because that due to Vk, the LMMSE IC filter
output is dependent on other IC outputs. As a result of (13), the
posterior distribution can be calculated in a sequential fashion
in K steps and at the lth step, the APPs can be expressed by

p(bk|ỹ1, · · · , ỹl) ∝ p(ỹl|bk)p(bk|ỹ1, · · · , ỹl−1) ∀k (14)

where p(bk|ỹ1, · · · , ỹl−1) = p(bk) when l = 1. Notice that
the same difficulty as in (2) arises in evaluating p(ỹk|bk) and
PDA can be thus applied to approximate it.

An alternative view on the above sequential update can be
cast from a system perspective. We can regard the problem
as K, rather than one, multiuser systems, with the output of
the lth system as ỹl . Since all the outputs are independent,
we can then calculate the APPs of the bits sequentially from
the first to the Kth system and, for the lth system, the
APPs obtained from the l − 1th system will be used as the
a priori probabilities. Since each system is still a multiuser
system, same complexity difficulty exits, which, however, can
be overcome by PDA.

If there is no approximation in calculating the likelihood
p(ỹk|bk) at each step, then after K steps we would obtain the
desired APPs exactly from (14). However, since PDA produces
approximated APPs at each steps, a ‘smoothing’ process is
thus preferred after an iteration of K steps. In our design,
smoothing is performed by repeating another iteration of K
similar steps with, however, the most recently estimate of
APPs as the priors. When recycling the APPs as the priors, it
is important to avoid double counting the likelihoods. To see
the problem, suppose we are at the lth step of the smoothing
process and we want to update the APP p(bk|ỹ1, · · · , ỹK)
based on ỹl. According to the Bayes’ theorem we have

p(bk|ỹ1, · · · , ỹK) ∝ p(ỹl|bk)p(bk|ỹ−l) (15)

where ỹ−l is a (K − 1) × 1 vector including all the filter
outputs except ỹl. Notice to recycle the likelihood p(ỹl|bk) for
an update on the APP, the prior probability is p(bk|ỹ−l), which
does not include ỹl . However, unlike during the first iteration,
the most recent APP on bk is an estimate on p(bk|ỹ1, · · · , ỹK),
which already incorporates the likelihood information about
ỹl and thus the likelihood p(ỹl|bk) would be counted twice
if the recent APP on bk were used directly as a prior. The
problem can be avoided by removing the likelihood from the
APP before being used as the prior. The process is more
conveniently performed on the log-ratio scale

ln
p(bk = 1|ỹ−l)

p(bk = −1|ỹ−l)
(16)

= ln
p(bk = 1|ỹ1, · · · , ỹK)

p(bk = −1|ỹ1, · · · , ỹK)
− ln

p(ỹl|bk = 1)
p(ỹl|bk = −1)

(17)

and actually implemented as

λ
(m,l)
LPrR(bk) = λ

(m,l−1)
LPR (bk) − λ

(m−1,l)
LLR (bk) (18)

where the superscript (m, l) denotes the m-th iteration and the
l-th step. As in the regular PDA, the above procedure iterates
until all the APPs converge. In light of the above discussion,

we term the sequential calculation of the APPs by PDA as the
sequential PDA detector (SPDAD).

As to the specific choice of the IC filter W̃k in (12), one
example is the whitened matched filter, i.e.,

W̃k = F−�

where F is the uniquely defined K×K lower triangular matrix
obtained from the Cholesky factorization of R. Then ỹl, the
output of the lth subsystem, can be expressed as

ỹl = e�l F−�y =
l∑

k=1

AkFlkbk + n̄l (19)

where Flk is the lkth element of F and n̄l is white Gaussian
noise with variance N0

2 . Apparently, ỹl is independent of other
IC outputs. Based on ỹl, PDAD can be performed to update
Pk for k = 1, · · · , l and, for the update of Pk, the LLR is
calculated according to

λLLR(bk) = 2AkFlk(ỹl − µk)/Σk (20)

where µk and Σk are obtained from (4) and (5) as

µk =
l∑

i=1,i �=k

AiFli b̃i (21)

and

Σk =
l∑

i=1,i �=k

A2
i F

2
liσ

2
bi

+
N0

2
. (22)

We call the SPDAD derived from the whitened matched
filter as the belief-directed SPDAD (BD-SPDAD). In the
implementation of the BD-SPDAD, we want to point out that
we allow only one sweep for the PDAD from k = 1 to l
when calculating the APPs at each subsystem l. It is because
the information on the user bits in ỹl can be vague and more
PDA sweeps might result in suboptimum APPs. Since no
matrix inversion is need when performing data association,
the complexity of each iteration in BD-SPDAD is of O(K2).
Compared with the complexity of O(K3) of the original
PDAD, there is a major reduction especially for systems with
large numbers of users. The algorithm of the BD-SPDAD can
be summarized in the following chart

Belief-Directed Sequential PDA Detector
1) Initialization: Set m = 1, Pk = p(bk)∀k and calculate

λLPrR(bk)∀k.
2) WMF output: Calculate ỹk∀k from (19).
3) For l = 1 to K

• For k = 1 to l

– Data Association: Compute µk and Σk from (21)
and (22);

– Belief Calculation: Calculate the LLR
λ

(m,l)
LLR (bk), LPR λLPR(bk), and Pk according to

(20), (9), and (10);
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• Belief passing: Set, for k = 1, · · · , l

λLPrR(bk) =
{

λLPR(bk) if m = 1
λLPR(bk) − λ

(m−1,l)
LLR (bk) otherwise

4) Convergence testing : If the APPs converge, go to 5) .
Otherwise, go back to 3) and set m = m + 1.

5) Detection: Detect bks according to (11).

V. SIMULATION AND CONCLUSION

To evaluate the bit-error-rate (BER) performance of the
BD-SPDAD, we considered a 15-user system with random
signature sequences of length 17. In addition, we assumed
each users have equal power Eb and the SNR is calculated
as Eb/N0. In our simulation, the BER at a specific SNR was
computed as the average BER among all users. For all the
tested PDAD algorithms, we stoped the iteration when either
Pks converge or a maximum number of iteration has been
reached, which is set as 10 in the simulation.

In Figure 1, the BER performance versus Eb/N0 is depicted,
where the BD-SPDAD is compared with the PDAD, the BD-
SPDAD after 1 iteration (BD-SPDAD-itr1), the PDAD after
1 iteration (PDAD-itr1), and the decision feedback detector
(DFD). Even though the DFD is computationally simple, it
has an apparent performance loss as Eb/N0 increases. We
observe that the performance of the BD-SPDAD is very close
to that of PDAD in the lower Eb/N0 area from 0 to 20 dB,
yet, in the high Eb/N0 area above 20 dB, the BD-SPDAD
actually outperforms the PDAD. And the improvement is more
pronounced as Eb/N0 increases.

We also find the gap between the BD-SPDAD-itr1 and
the BD-SPDAD is significantly smaller than that between the
PDAD-itr1 and PDAD. Especially, BD-SPDAD-itr1 is almost
superposed with BD-SPDAD as Eb/N0 is above 18 dB. This
means the improvement for BD-SPDAD after one iteration is
really very small.

In Figure 2, we present the average number of iterations,
another important indication about algorithm convergence. It
shows that overall the BD-SPDAD and the PDAD converge at
almost same average number of iterations, yet the BD-SPDAD
requires less iterations than the PDAD in Eb/N0 region from
6dB to 20dB. Considering the complexity reduction of the
BD-SPDAD over the PDAD in one iteration, we can see the
BD-SPDAD has much less computation.

Based on the simulation results depicted in Figure 1 and 2,
it is not hard to draw the conclusion for the BD-SPDAD: The
BD-SPDAD provides comparably good and even improved
performance than the PDAD with much less computational
cost.
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