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ABSTRACT
This paper deals with space-time detection and channel pa-

rameter estimation in a bit-interleaved coded modulation

(BICM) scheme for asynchronous Direct-Sequence Code

Division Multiple Access (DS-CDMA) transmission over

frequency selective channels. Using a pilot sequence to ob-

tain sufficiently accurate channel estimates for this system

requires an unacceptably large number of pilot symbols.

In this contribution, we consider several code-aided esti-

mation schemes which can be incorporated in an iterative

Space-Time (ST) turbo detection scheme. We point out that

the EM algorithm, which has recently been addressed as a

convenient tool for code-aided estimation, has some serious

drawbacks because of the large number of parameters to be

estimated. These can be resolved using the Space Alternat-

ing Generalized Expectation Maximization (SAGE) algo-

rithm. We show through computer simulations that the pro-

posed low complexity ST receiver with SAGE estimation

considerably outperforms conventional estimation schemes.

1. INTRODUCTION

Direct-Sequence code-division multiple-access systems have

the ability to accommodate multiple users in multi-path fad-

ing environments. Recently developed coding and detec-

tion schemes allow a reliable transmission at very high data

rates. However, in order to exploit the channel capacity and

diversity, the receiver requires accurate parameter estimates.

In recent years, a lot of effort has been put in develop-

ing powerful channel estimation algorithms. Most of them
are based on the Expectation-Maximization (EM) algorithm

and have been shown to have excellent performance in a

wide variety of scenarios. Estimation algorithms using pi-
lot symbols were investigated in [1, 2] for synchronous and
asynchronous systems, respectively. A flat Rayleigh fading

channel was assumed in [1] with an EM-based estimator.

In [2], a different approach is taken: based on an extension

of the EM algorithm, the SAGE algorithm [3] was applied

for the estimation of channel parameters of a static multi-

path channel. Both papers report excellent performance,

though the estimator based on the SAGE algorithm gener-

ally has faster convergence and is less computationally de-

manding. In a multi-antenna context, we mention [4], also

applying the SAGE algorithm in a data-aided (DA) context.

On the other hand, the literature on code-aided estima-
tion for DS-CDMA and in particular frequency offset esti-
mation is quite scarce. A general framework for code-aided

EM estimation of channel and frequency offset for coded

signals was proposed in [5], but only applied to a simple

SISO system in AWGN channel.

In this paper, we focus on a coded asynchronous DS-

CDMA configuration with multiple receive antennas. We

propose a detector that iterates between space-time detec-

tion and estimation. Parameter estimation is developed start-

ing from the ML criterion which is solved by the EM al-

gorithm in an iterative manner. The latter turns out to be

still complex, and therefore an efficient estimator by means

of the SAGE algorithm is proposed. Computer simulations

verify the gain achieved by exploiting information from the

coded symbols compared to data-aided estimation.

2. SYSTEMMODEL

At the transmitter side, a block of convolutionally encoded

bits are interleaved and grouped into sub-blocks of q bits.
The resulting block of coded bits is mapped to a sequence of

Md symbols (denoted by vector d), belonging to a 2q-point

complex constellation Ω. Multiplexing withMt pilot sym-

bols p yields the sequence [d [−Mt] , .., d [Md − 1]]. The
complex symbols d [m] are shaped by a normalized spread-
ing waveform u(t) that contains a spreading code a(i) of
length Nc: uk(t) = (1/

√
Nc)

∑Nc−1
i=0 ak(i)π(t − iTc). We

will denote by Td, Tc and Nc, the symbol period, the chip

period and the spreading factor, respectively. Note that Td =
NcTc. We consider a system where the receiver is equipped

with an array of nR antennas. The resulting signal prop-

agates through a multi-path fading channel, with L paths.
The channel impulse response, seen by the p-th receive an-
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Fig. 1. Receiver structure.

tenna is given by

gp(t) =
L∑

l=1

gp
l δ(t − τp

l ) (1)

where gp
l and τp

l are the complex gain and path delay of the

l-th propagation path, respectively. We further assume that
each path invokes a different frequency offset F p

l caused

by an oscillator mismatch and/or Doppler shift. Because

of the latter we consider a model with different frequency

offsets for the different paths. Θ will represent the param-
eter vector defined as Θ =

[
Θ1, . . . ,ΘnR

]
where Θp =

[gp
1 , τp

1 , F p
1 , . . . , gp

L, τp
L, F p

L]. The data frames are corrupted
by a vector of independent additive white Gaussian noise

n(t) with power spectral density 2N0. Hence, the equiva-

lent baseband signal on the different antennas at the receiver

is given by the (nR × 1) vector:

r(t) = s(t,d,p,Θ) + n(t) (2)

where the p-th component of s(t,d,P,Θ) can be written as

sp(t,d,p,Θp) =
Md−1∑

m=−Mt

d [m]
L∑

l=1

gp
l u(t−mTd−τp

l )ej2πF p
l t.

The ST turbo-detector, is depicted in Fig. 1. Space-time

equalization is performed using a MMSE parallel interfer-

ence cancellation (PIC) [6]. The detection process is per-

formed in an iterative fashion. Each detection iteration con-

sists of equalization [6], soft demodulation, and soft decod-

ing. For further detail we refer to the system outline in [6,7].

3. CHANNEL PARAMETER ESTIMATION

In this section we will apply the three estimation algorithms

(ML,EM,SAGE) to the problem at hand: channel parameter

estimation in the presence of unknown data symbols (which

we will refer to as nuisance parameters) for DS-CDMA. Our

aim is to estimate a parameter vectorΘ from an observation

r in the presence of a so-called nuisance parameter d, cor-
responding to the unknown transmitted data-symbols. We

will illustrate the benefit of using the SAGE algorithm in

terms of complexity and convergence speed.

3.1. ML estimation

In principle, an estimate of Θ can be obtained by maximiz-
ing the likelihood function, averaged over the (uniformly

distributed) nuisance parameter d:

Θ̂ = arg max
Θ
Ed [p(r|d,Θ)] (3)

Unfortunately, straightforward application of the ML es-

timation procedure has two complexity-related problems:

first of all, averaging in (3) is performed over all possible

codewords, making ML estimation in coded systems in-

tractable (even for uncoded systems). Secondly, (3) involves

a high-dimensional optimization problem (3 × nR × L pa-
rameters), which is in practice very hard to solve.

3.2. The EM algorithm

In this section we introduce the EM algorithm as an itera-

tive solution for the estimation problem outlined above. It

requires us to define the so-called complete data z. Suppose
we have somehow obtained an estimate of Θ: Θ̂ (ξ), with ξ
denoting the iteration index. We now iterate between the

so-called E-step and the M-step. In the E-step, we take the

expectation of the log-likelihood function (LLF) of the com-

plete data, given the observed data and the current estimate

of Θ:

Q
(

Θ| Θ̂ (ξ)
)

= Ez

[
log p (z|Θ)

∣∣∣r; Θ̂ (ξ)
]
. (4)

In the M-step, we then maximize the average LLF with re-

spect to Θ:

Θ̂ (ξ + 1) = arg max
Θ

Q
(

Θ| Θ̂ (ξ)
)

. (5)

In order to achieve convergence to the ML estimate, a fairly

good initial estimate of Θ is required.

3.2.1. Conventional EM-algorithm

In correspondence with [5], we select as complete data z =
[d, r]. It was shown in [5] that the averaging in (4) may be
performed based solely on the marginal a posteriori proba-

bilities (APP) of the coded symbols: P
(
dk [m]

∣∣∣r; Θ̂ (ξ)
)
.

These probabilities can be obtained from the detector (in an

iterative way). Thus, the complexity of the ML estimation

due to the presence of the code has been reduced to an ac-

ceptable level. However, the maximization in (5) is still a

high-dimensional problem (3 × nR × L parameters).
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3.2.2. Signal Decomposition for EM estimation

The complexity of the EM algorithm w.r.t. the high dimen-

sional maximization can be resolved by selecting a differ-
ent complete data, based on signal decomposition [8]. We
first focus on a single receive antenna. The useful signal

w.r.t. the estimation of Θp
l at the p-th receive antenna is

given by

sp
l (t,d,p,Θp

l ) = gp
l

Md−1∑
m=−Mt

d [m]u (t − nTd − τp
l ) ej2πF p

l t.

If we now define xp
l (t) = sp

l (t,d,p,Θp
l ) + npl (t) , where

n
p
l (t) is the noise term obtained by decomposing np (t) [8],
then the signal at the p-th receive antenna can be written as
the sum ofL independent contributions: rp (t) =

∑L
l=1 xp

l (t) .
We denote by xp

l the projection of xp
l (t), and define

xp = [xp
1, . . . ,x

p
L] and x =

[
x1, . . . ,xnR

]
. In contrast

to the previous paragraph, we define the complete data as

z = [x,d]. Since the components xp
l in x are mutually

independent, the LLF can be decomposed. Some straight-

forward calculation yields the following E-step:

Q
(

Θ| Θ̂ (ξ)
)

=
nR∑
p=1

L∑
l=1

Q′
(

Θp
l | Θ̂ (ξ)

)
(6)

with Q′
(

Θp
l | Θ̂ (ξ)

)
= Ex,d

[
log p (xp

l |Θp
l ,d )

∣∣∣r; Θ̂ (ξ)
]
.

Thanks to the decomposition, theM-step is now transformed

into nR×L parallel 3-dimensional maximization problems:

Θ̂p
l (ξ + 1) = arg max

Θp
l

Q′
(

Θp
l | Θ̂ (ξ)

)
(7)

The update equations, obtained by a tedious but straightfor-

ward derivation have the following form:

(
τ̂p
l (ξ), F̂ p

l (ξ)
)

= max
τ,F

ψp
l

(
τ, F, d̃, Θ̂p(ξ − 1)

)
(8)

ĝp
l (ξ) =

ψp
l

(
τ̂p
l (ξ), F̂ p

l (ξ), d̃, Θ̂p(ξ − 1)
)

Md + Mt
(9)

where d̃ denotes the soft-symbols computed from the APP
probabilities of the coded symbols P

(
d [m]

∣∣∣r; Θ̂(ξ − 1)
)
,

provided by the detector. Because of page limitations the

expressions for ψp
l (.) are omitted. We see that by select-

ing a different complete data, the EM algorithm is trans-

formed from one large 3×nR×L-dimensional problem into
nR × L parallel 3-dimensional problems. Hence, the esti-
mation problem is partially decoupled and finally tractable.

However, we still encounter a 2-D maximization process

(8), and because of the large complete data set, the con-

vergence rate is unsatisfactory [3]. In a final step, we apply

the SAGE algorithm to encompass these impediments.

Algorithm 1 SAGE estimation
1: input: Θ̂ (0, ξ) ← Θ̂ (ξ − 1) ≡ Θ̂ (κmax, ξ − 1)
2: input: P

(
dk [m]

∣∣∣r; Θ̂ (ξ − 1)
)
→ d̃

3: for κ = 1 to κmax do
4: n ← (κ mod L + 1)
5: for p = 1 to nR do
6: E-step: compute ψp

n

(
τ, F, d̃, Θ̂p(κ − 1, ξ)

)
7: M-step: update Θ̂p

κ (κ, ξ) ((10) - (12)).
8: end for
9: end for
10: return Θ̂ (κmax, ξ)

3.3. The SAGE algorithm

The Space Alternating Generalized Expectation Maximiza-

tion (SAGE) algorithm can be seen as an extension of the

EM algorithm [3]: rather than updating all these parameters

at once in (5), we break up the problem in low-dimensional

subproblems by conditioning on a subset of the parameters.

We then use the EM algorithm to solve the subproblems.

Without going into much detail, we will briefly out-

line the final estimator resulting from the SAGE algorithm.

Strict application of the SAGE algorithm would require an

update of the soft-symbols d̃ at the beginning of each SAGE-
iteration. However, since the detector-step (which com-

putes d̃) is the main computational burden, we will only up-
date the soft-symbols after a fixed number of κmax SAGE-

iterations (κ-iterations). Assume we are within iteration ξ
between estimator and detector. Instead of updating all the

3 × nR × L parameters at once, the SAGE algorithm it-
eratively updates the parameters, one at a time. In the κ-
th (SAGE-)iteration, we update 3 × nR parameters: Θp

n =
(τp

n, F p
n , gp

n) , p = 1 . . . nR with n = (κ mod L + 1). We
have available: d̃ and Θ̂p (κ − 1, ξ). The update-equations
for parameters Θp = (τp

n, F p
n , gp

n) are:

τ̂p
n(κ, ξ) = max

τ
ψp

n

(
τ, F̂ p

n(κ − 1, ξ), d̃, Θ̂p(κ − 1, ξ)
)
(10)

F̂ p
n(κ, ξ) = max

F
ψp

n

(
τ̂p
n(κ, ξ), F, d̃, Θ̂p(κ − 1, ξ)

)
(11)

ĝp
n(κ, ξ) =

ψp
n

(
τ̂p
n(κ, ξ), F̂ p

n(κ, ξ), d̃, Θ̂p(κ − 1, ξ)
)

Md + Mt
(12)

The remaining parameters are not updated in iteration

κ: Θ̂p
l (κ, ξ) = Θ̂p

l (κ − 1, ξ) , l �= n. As explained above,

the soft-symbols d̃ are not updated within each κ-iteration
for reasons concerning the complexity. The two main differ-

ences with the EM algorithm are that the 2-D maximization

problem (8) is now decoupled into (10) and (11) and newly

obtained parameter updates are used immediately for sub-

sequent κ-iterations, whereas in the EM algorithm newly
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updated parameters are only applied in the next ξ-iteration.
Hence, the complexity is reduced and, the convergence rate

increased.

To summarize, we outline the SAGE estimator in Algo-

rithm 1. Suppose we are operating at the start of iteration

ξ between detection and estimation. We denote by Θ̂ (κ, ξ)
the estimate of Θ obtained in the κ-th iteration within the
SAGE algorithm, for a fixed ξ.
The algorithm accepts as input the previous estimate of

Θ (i.e., Θ̂ (ξ − 1)), as well as the APPs of the coded sym-
bols d̃ based on these estimates.
Note that in the E-step of Algorithm 1, the soft-symbols

d̃ remain unchanged for all κ-iterations. Furthermore we
only perform one detection iteration (Fig. 1) for each soft-

symbol update (for each ξ-iteration). This means that the es-
timation is integrated in the detection iterations and causes

little overhead (no extra decoding iterations are required

only the iterative calculation (κ-iterations) of (10)-(12)).

4. NUMERICAL RESULTS

In this section we will provide numerical results to evaluate

the performance of the proposed iterative multiuser receiver.

We have carried out computer simulations for a system, us-

ing a rate R = 1/2 convolutional code with 8-PSK sig-
naling. Frames consist of 120 coded data symbols and 10
training symbols. We consider randomly chosen but fixed

path delays and channel gains.

Fig. 2 shows plots for different estimation scenarios of

the SAGE algorithm. The initial channel estimate is ob-

tained by the DA SAGE algorithm [1, 4] (using 10 pilot

symbols), whereas the initial frequency offset is set equal

to zero. The actual frequency offset is chosen the same for

all paths and is randomly distributed between ±0.1 1
Md+Mt

.

Compared to the DA estimation (ξ = 0), a substantial per-
formance gain is observed (up to 3dB for the joint estima-
tion of all parameters).

5. CONCLUSION

We have investigated a DS-CDMA receiver with BICM,

performing iterative space-time detection and channel pa-

rameter estimation. The estimator operates by accepting

soft information from the detector. We showed how the low-

complexity SAGE algorithm can be applied for this prob-

lem. The computational overhead of the estimator is mini-

mized by embedding the estimation stages in the detection

stages so that a form of joint detection and estimation is
performed.

The performance of the proposed algorithm is evaluated

in terms of BER. It turns out that the SAGE algorithm, ex-

ploiting information from all the data symbols significantly

outperforms the standard iterative DA SAGE algorithm.
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