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Abstract— A novel scheme exploiting rate-compatible punc-
tured convolutional (RCPC) codes is proposed for distributed
and adaptive source coding. The proposed scheme is based
on the SF-ISF approach in [9]. It is simple, general, flexible,
and provenly optimal. For the class of RCPC codes that
are obtained from puncturing the parity bits of a recursive
systematic convolutional (RSC) mother code, it is shown that
an ”optimal” codec exists where a single source encoder and
a single source decoder can accommodate a set of different
compression rates efficiently.

I. INTRODUCTION

First stated in a simple seminal paper by Slepian and Wolf
in 1973 [1], distributed source coding (DSC) has aroused
considerable interest in the signal processing community
in recent years. Through separate compressing but joint
de-compressing of (correlated) sources, DSC promises the
same overall compression rate as joint compressing. The
technology is of particular interest to sensor networks, due
to its ability to eliminate the redundancy within individual
sensors as well as across sensors without explicit inter-
sensor communication [2][3].

Unlike conventional compression methods, the key idea of
DSC is to convert the source coding problem to an equiva-
lent channel coding one and to exploit a linear channel code
for the purpose of compression. Following the constructive
demonstration in [2], a variety of efficient DSC schemes
have been proposed using practical channel codes (eg.
[2]-[9]). However, these existing schemes have primarily
focused on fixed-rate compression, without addressing the
flexibility issue. To fully harness the power of DSC, rate
adaptivity is needed, which enables the sources (e.g sensor
nodes) to continuously exploit the (time-varying) source
correlation and compress at the just-right rate.

This paper investigates distributed and adaptive compres-
sion strategies that are capable of providing a set of differ-
ent compression rates with efficiency and low complexity.
Specifically, we propose a novel adaptive DSC scheme based
on rate-compatible punctured convolutional (RCPC) codes.
The scheme is simple, general, and provenly-optimal. To
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begin, RCPC codes are a family of convolutional codes with
a set of distinct rates obtained from puncturing of the same
mother code. The advantage of rate-compatible (RC) codes
is that, since codewords of the high-rate codes in the family
are embedded in those of the low-rate ones, a single pair of
encoder and decoder is needed to perform channel coding
for the entire family. When used as a source code, since the
compression rate Rc is the complimentary of the code rate
R: Rc = 1−R, a set of distinct compression rates can be
obtained. However, to optimally and efficiently exploit the
different compression rates promised by the RC code (i.e.
without rate loss and using minimal hardware) is not easy,
since a DSC formulation tends to be strictly “customized”
for a specific code, making it very difficult to concurrently
accommodate multiple codes.

The novel strategy proposed here is based on the SF-ISF
approach, a general DSC framework proposed in [7][9] that
enables an arbitrary linear channel code to be optimally con-
verted to a Slepian-Wolf code, provided that the syndrome
former (SF) and the inverse syndrome former (ISF) of the
channel code can be constructed. Since for most channels’
codes, SF-ISF construction is straight-forward and a much
lighter task than directly constructing the source encoder
and source decoder, the SF-ISF framework has considerably
simplified the DSC problem. Furthermore, for linear block
codes, convolutional codes and parallelly/serially concate-
nated codes, systematic ways to construct SF-ISF pairs have
been proposed [9]. This forms the base approach on which
we build the adaptive scheme.

The key contribution of this paper is the extension of the
SF-ISF construction proposed in [7][9], which works for
non-punctured codes only, to punctured codes, and subse-
quently to RCPC codes. Specifically, we show that for RCPC
families that are obtained from puncturing the parity bits of a
recursive systematic convolutional (RSC) code, there exists
a single pair of SF and ISF, implemented in simple linear
sequential circuits, that work for all (punctured) codes in
the RC family. This in turns enables the construction of one
simple DSC codec with minimal hardware.

Finally, we note that the proposed strategy can be par-
allelly applied to rate-compatible punctured turbo (RCPT)
codes using the SF-ISF formulation in [7][9]. This would
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subsequently result in adaptive RCPT DSC scheme that is
expected to have an even stronger compression capability
(since turbo codes are stronger than convolutional codes),
but will also have a higher complexity.

II. THE BASE APPROACH FOR DSC

The fundamental idea behind the proposed DSC scheme
as well as the general SF-ISF approach is code binning [1].
At its information-theoretic root, code binning refers to a
distributed strategy of using 2nH(X,Y ) (typical) sequences
to describe a joint source (X, Y ). The idea is to place the
2nH(X,Y ) sequences uniformly in 2nH(X|Y ) bins, and to
assign nH(X |Y ) bits and nH(Y ) bits, respectively, for in-
dexing the bins and enumerating specific sequences in a bin.
(Here H denotes the Shannon entropy function.) In practice,
code binning is applied to asymmetric DSC of binary i.i.d
sources, where one source, say Y n, is compressed using a
conventional method (at rate 1:H(Y )), and the other source,
Xn, is compressed using an (n, k) linear channel code (at
rate n : (n−k)) with the understanding that X and Y are
correlated by p = H(X �= Y ) and that Y will be losslessly
available at the decoder to help recover Xn. Specifically,
the compression of Xn can be performed through arranging
the 2n source sequences in the 2n−k cosets as defined by
the (n, k) channel code, and representing a source sequence
(length n) using its coset index, or the syndrome (length
(n−k)). To ensure the lossless and unique decodability, two
basic conditions need to be satisfied: (1) The compression
rate n−k

n
needs to be greater than or equal to the residual

entropy H(X |Y ) = H(p), and (2) the (n, k) channel code
needs to be capable of supporting reliable transmission of k
information bits on BSC(p) channels [1].
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Fig. 1. (A): The universal SF-ISF codec proposed in [9]. (B). The modifi ed
SF-ISF codec for use with punctured codes and RCPC codes.

Note that the binning idea only outlines the construction
of an optimal codebook, i.e. a triple of functions: fx :
X → W, fy : Y → V, and g : (W, V) → (X, Y), without
illuminating the implementation of the codec. Hence, the
efficiency with which compression and decompression can
be performed depends on the actual realization of the DSC
codec. For the base approach to construct adaptive DSC
schemes, we turn to the SF-ISF codec [7][9], which is the

only universal DSC codec that works optimally for a variety
of practical channel codes. The structure of the SF-ISF codec
is illustrated in Fig. 1(A), where the key components include
the channel decoder (that comes with the channel code),
and a pair of valid syndrome former and inverse syndrome
former. Detailed discussion on the validity and optimality
of the SF-ISF codec can be found in [9]. Here we wish to
emphasize that this SF-ISF codec is particularly attractive
for use in conjunction with rate compatible codes, since only
a single channel decoder (that corresponds to the mother
code) is needed in the source decoder.

III. ADAPTIVE DSC USING RCPC CODES

To make use of the universal codec in Fig. 1, we need
to construct SFs and ISFs for the family of RCPC codes.
We start with the non-punctured code (i.e. the mother code),
and then move on to the punctured code(s).

A. SF-ISF for Non-Punctured Convolutional Codes

As the name suggests, the role of the SF is to find the
syndrome sequence for the given source sequence (virtual
codeword of the channel code); and the role of the ISF
is to find an arbitrary source sequence that is associated
with the given syndrome sequence. While a table-lookup is
always possible in theory, the complexity involved makes it
impractical in real systems. The simple SF-ISF construction
presented here is based on linear sequential circuits [7][9].

Let G denote the generator matrix of a rate k/n binary
non-punctured convolutional code, which is formed from
k × n generator polynomials in the D-domain. Define the
transfer matrix, HT , as a n×(n−k) matrix in the D-domain
which has a rank (n−k) and satisfies

GHT = 0, (1)

where superscript T stands for matrix transposition. It can
then be verified that HT and its left inverse, (H−1)T , form
a valid pair of SF and ISF [7][9]. By left inverse, we mean

(H−1)T HT = I, (2)

where I is the identity matrix.

B. SF-ISF for Punctured Convolutional Codes

The above SF-ISF construction is simple and efficient,
but works for non-punctured convolutional codes only, and
hence, excludes a considerable set of candidate codes. To
exploit potentially good punctured convolutional codes and
particularly rate-compatible punctured convolutional codes,
we propose to convert them to non-punctured equivalen-
cies and subsequently construct the corresponding SF and
ISF. Intuitively, such a transformation is possible (e.g. via
polyphase transform) due to the linearity of the punctured
code and the periodic relation between the source bits and
the code bits. Rigorous proof will follow in the succeeding
subsections.
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Let G denote the k × n generator matrix of the rate
R0 = k/n mother code and t denote the puncturing pe-
riod. The equivalent non-punctured generator matrix of the
punctured code can be obtained by first transforming G to
Gt, an equivalent matrix of dimensionality kt×nt, and then
extracting the irrelevant columns. The key problem here is
how to efficiently expand an arbitrary generator matrix G
by a factor of t both in rows and columns.

Before we proceed to the main results of this paper, let
us first discuss the notation. Note that the binary vector
space and the D-space has a one-to-one correspondence.
A D-domain non-recursive (i.e. feed-forward) polynomial
A(D) =

∑m

i=0 aiD
i corresponds to a binary sequence ā =

[a0, a1, · · · , am], where D is viewed as a delay element. The
sequence ā can be divided into t sub sequences according
to the modulo-t positions, i.e.,

ā
(t)
0 = [a0, at, a2t, · · · ],

ā
(t)
1 = [a1, at+1, a2t+1, · · · ],

· · · · · ·

ā
(t)
t−1 = [at−1, a2t−1, a3t−1, · · · ],

whose D-domain representations are given by

A
(t)
j (D) =

m∑
i=0

ait+jD
i, j = 0, 1, · · · , t − 1. (3)

Clearly, we have

A(D)=A0(D
t)+DA1(D

t)+· · ·+Dt−1At−1(D
t). (4)

The superscript (t) is omitted where there is no confusion.
To ease proposition, define Ã(t)(D)

∆
=⎡

⎢⎢⎣
A0(D) A1(D) · · · At−2(D) At−1(D)

DAt−1(D) A0(D) · · · At−3(D) At−2(D)
· · · · · · · · · · · · · · ·

DA1(D) DA2(D) · · · DAt−1(D) A0(D)

⎤
⎥⎥⎦ ,

as the t-cyclic elementary matrix of A(D). Note that A(D)
is a feed-forward polynomial in the D domain, and Ã(t)(D)
is a t × t square matrix that contains t2 D-domain feed-
forward polynomials. We have the following properties for
Ã(t)(D):

Lemma 1: (Properties of a t-cyclic elementary matrix)
• Ã(D) is a full rank matrix provided that A(D) �= 0.
• When A(D) = 1, Ã(D) is an identity matrix.

Theorem 1: For a rate k/n convolutional code with gen-

erator matrix G
∆
= [Gi,j ]k×n, where each entry Gi,j(D) =

Ui,j(D)/Vi,j(D), and Ui,j(D) and Vi,j(D) are feed-forward
polynomials, the equivalent generator matrix Gt can be
obtained by replacing each entry Gi,j(D), with a t×t square
matrix Ũi,j(D)(Ṽi,j(D))−1.

Proof: The proof of Lemma 1 and the Theorem 1 requires
careful algebra, but is otherwise straight-forward. Hence it
is omitted.

We note that the transformation from G to Gt is always
valid since Ṽi,j(D) is a full rank square matrix and hence

its inverse always exists. Further, the Theorem is applicable
to both systematic and non-systematic, recursive and non-
recursive convolutional codes. For example, when the code
is a non-recursive convolutional code, then Vi,j(D) = 1 and
Ṽi,j(D) = Ik for ∀ 1 ≤ i ≤ k and 1 ≤ j ≤ n.

C. Adaptive DSC Using RCPC Codes

If we can represent any punctured convolutional code in
an equivalent non-punctured closed form, then the SF-ISF
construction method discussed in the previous sub Section
can certainly be applied. It should be noted, however, in
order for one channel decoder (that of the mother code)
to accommodate the outputs from possibly different ISFs
(see the decoder structure in Fig. 1(A)), erasures need
to be inserted to align the sequences. This leads to the
slightly modified source decoder structure which is shown
in Fig. 1(B).

To summarize, exploiting RCPC codes in the SF-ISF
codec for adaptive-rate DSC can take the following steps:
(1) Transform the generator matrix of the mother code G to
Gt using Theorem 1; (2) For each RCPC component code,
delete the corresponding column(s) in Gt to form the closed-
form generator matrix and construct the respective SF-ISF
pair using (1) and (2); (3) Combine these SFs and ISFs in
as few linear sequential circuits as possible, and insert them
in the source encoder and the source decoder in Fig. 1(B);
(4) Finally, insert the channel decoder of the mother code
in the source decoder. This modular is invariant regardless
of what (punctured) code (from the RCPC family) is used,
provided that erasures are inserted properly.

Clearly, consolidating the set of SFs and ISFs is critical
in reducing the complexity and size of the source encoder
and the source decoder. If the set of SFs and ISFs can be
completely packed into a single SF and a single ISF (the
best case), then we say that the resulting DSC codec is “opti-
mized” in complexity. The theorem below states that certain
RCPC families are guaranteed to have an “optimized” DSC
codec.

Lemma 2: For a rate k/n recursive systematic convolutional
(RSC) code with generator matrix G = [Ik, Pk×(n−k)], a
valid pair of SF and ISF can take the following form:

HT =

[
Pk×(n−k)

In−k

]
, (H−1)T =

[
0(n−k)×k, Ik

]
(5)

Theorem 2: For a family of RCPC codes obtained from
puncturing the parity bits of a rate k/n mother RSC code
using period t puncturing patterns, there exists an “opti-
mized” DSC codec, where a single pair of SF and ISF that
are derived from the tk × tn expanded generator matrix of
the mother code using Lemma 2, work for all codes in the
RCPC family.

Proof: Let G and Gt be the mother generator matrix and
its expanded representation. Since Gt is an RSC generator
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matrix in the form of Gt = [Ikt, Pkt×(nt−kt)], a valid SF-
ISF pair can be derived using Lemma 2, denoted as Ht

T and
(H−1

t )T . Any punctured code in this RCPC family obtains
the equivalent closed-form generator matrix by deleting
certain column(s) in Pkt×(nt−kt)], which is systematic and a
sub matrix of Gt. Hence, if constructed using Lemma 2, the
SF and ISF for this punctured code are embedded in Ht

T

and (H−1
t )T . In other words, Ht

T and (H−1
t )T can fulfill

the role of SF and ISF for this punctured code by switching
off certain parts of the linear sequential circuits.

We not that Lemma 2 and Theorem 2 actually hold
for systematic, but not necessarily recursive, convolutional
codes. However, in practice, systematic but non-recursive
convolutional codes tend to perform worse than RSC codes
or non-systematic non-recursive codes.

Example: Consider a rate 1/2 RSC code with generator
matrix [1, 1+D+D2

1+D2 ]. Using a puncturing pattern [1, 1; 1, 0],
a rate 3/4 punctured code can be ordained. Hence the RCPC
family consists of two codes with rate 3/4 and 2/4 (the
mother code), respectively, which, if used in adaptive DSC,
can offer two compression rates of 4:1 and 4:2.

Let U(D)
∆
= 1 + D + D2 and V (D)

∆
= 1+D2, whose

2-cyclic elementary matrix are

Ũ(D)=

[
1+D 1

D 1+D

]
, Ṽ (D)=

[
1+D, 0

0, 1+D

]
,

Since
Ũ(D)(Ṽ (D))−1 =

[
1, 1

1+D
D

1+D
, 1

]
∆
= P2×2,

the expanded matrix of G is given by Gt =[I2, P2×2], and
a possible choice of SF-ISF pair is (using Lemma 2):

HT
t =

⎡
⎢⎢⎣

1, 1
1+D

D
1+D

, 1

1, 0
0, 1

⎤
⎥⎥⎦ , (H−1

t )T =

[
0, 0, 1, 0
0, 0, 0, 1

]
.

For the rate 3/4 punctured code, the equivalent closed-form
(i.e non-punctured) generator matrix is obtained by deleting
the forth column of Gt, i.e. [

1, 0, 1
0, 1, D

1+D

]
,

and a corresponding SF-ISF pair can be

HT
1 =

[
1,

D

1 + D
, 1

]T

, (H−1
1 )T =

[
0, 0, 1

]
.

Clearly, HT
1 and (H−1

1 )T are embedded in HT
t and (H−1

t )T .
Fig. 2 shows the linear sequential circuits of HT

t and
(H−1

t )T . Dark red lines also sketch the part that correspond
to HT

1 and (H−1
1 )T .

D. Simulations of the Adaptive RCPC DSC Scheme

As an example, we evaluated a family of RCPC codes
obtained from a rate 1/4 mother code with generator matrix
[1, 171/133, 145/133, 127/133]oct. Homogeneous punctur-
ing among the parity bits is performed which yields a series

of compression rates 4 : 2, 5 : 3, 6 : 4, 7 : 5 and 8 : 6. Fig. 3
shows the performance of these RCPC codes on memoryless
binary symmetric sources (BSC), where the x-axis denotes
the source correlation p and y-axis the normalized distortion.
Clearly, while each code in the RCPC family is useful in its
own way for fixed-rate DSC, they collectively can offer rate
adaptivity to varying source correlations from p ≤ 0.027,
0.047, 0.06, 0.08 to 0.10 (assuming a normalized distortion
of 10−5 is near lossless).

0
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Fig. 2. Linear sequential circuits for SF-ISF.
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Fig. 3. Performance of the adaptive RCPC DSC scheme.

IV. CONCLUSION

We have proposed an optimal adaptive-rate distributed
source coding scheme using RCPC codes. We show that
a single DSC codec can be used to accommodate a set of
distinct compression rates with minimal hardware. To the
best of the authors’ knowledge, this is the first adaptive DSC
scheme exploiting rate-compatible linear codes.
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