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ABSTRACT
The goal of group testing is to efficiently classify the state of a set

of distributed agents through a sequence of tests by imposing each

test simultaneously upon groups of agents. In this work, we de-

scribe the concept of group testing in a generalized framework and

propose to apply this concept to solve the scheduling and multi-

ple access problem in a large scale wireless sensor network. Since

the standard approach is to dedicate a single channel to each sen-

sor, we discuss the efficiency of group testing by comparing it to

the case where each sensor is tested individually. Through the se-

quence of tests, the group testing strategy successively refines the

observation space of the set of sensors and eventually identifies the

status of each sensor when the space is refined to only one element.

We show that the successive refinement property of group testing

(similar to that of arithmetic coding) plays an important role in

its performance. Based on this concept, we provide insight into

choosing optimal group testing strategies for general applications.

1. PREMISE

Since [1] reported the negative scaling laws in large scale

wireless networks, several papers have tried to consider as-

sumptions and models that overcome the vanishing through-

put of multi-hop transmission in wireless networks. The

problem has been approached from two main directions.

Some have studied models for the aggregate data rate that

scale favorably and have proposed either distributed com-

pression techniques [2, 3] or combined routing and com-

pression methods [4]. Some have contended that this prob-

lem has no solution, in spite of the fact that the vanish-

ing aggregate data rate [5]. Others have considered ways

of ideally cooperating among nodes [6] using space-time

codes across multiple network nodes acting cooperatively

as a MIMO system that would provide greater capacity than

the sum of the individual point-to-point links could provide.

Even if compression or cooperative transmission can, in

principle, provide scalable solutions, the complexity of the

algorithms and their optimal design justifies some reason-

able skepticism around the fact that large sensor networks

of unmanned agents are going to be designed following the

ideas contained in these papers.
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With this premise, it is clear that transmission and com-

pression have to be viewed in completely different terms to

derive designs that scale in performance as well as in com-

plexity. Due to the fact that the receivers used for group

testing can be implemented with simple energy detectors

and because of the simple feedback that it requires, we think

that the paradigm of group testing provides a compelling ex-

ample of a scalable family of solutions for sensor networks.

2. CLASSICAL GROUP TESTING

Group testing (GT) was first proposed by Dorfman [7] dur-

ing World War II to efficiently identify syphilitic men that

were called upon to serve in the US army. Since the event

of having this disease is relatively rare, Dorfman realized

that it was extremely inefficient to test the blood samples of

each individual separately and propose to reduce the aver-

age number of tests necessary by pooling a number of blood

samples together into one test. Since then, the concept of

group testing has arise in many industrial applications [8]

such as testing the leakage of devices or identifying the de-

fective light bulbs by arranging a group of them in series.

Group testing has also been studied in the context of

random access scheduling [9]. In contrast to TDMA where

each node in the network is assigned a unique transmis-

sion channel, group testing allocates the same time slot for

the transmission of multiple nodes. If more then one node

within the group has a packet to transmit, a collision will

occur and a subgroup of these nodes will then be chosen to

transmit in the future time slots. If there is at most one node

transmitting within a time slot, the group of nodes that are

allocated to this time slot is then completely resolved.

Interestingly, the effect of group testing is equivalent to

classifying the network of agents into classes that corre-

spond to their respective state. For example, in the blood

testing case, group testing classifies the blood samples into

those that are contaminated with the disease and those that

are not; in the random access example, nodes in the net-

work are classified into those that have a packet to transmit

and those that are idle. From this point of view, group test-

ing can be used, in general, to classify the status of agents

in a large population. By accurately partitioning the agents

into classes, the central agent equivalently obtains complete

knowledge of the information contained in the agents, i.e. it
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effectively retrieves the data from the distributed agents.

Although group testing was proven to be advantageous

in the case of detecting a rare event under the i.i.d. Bernoulli

model, we have shown, recently, that these methods may

also be used to efficiently classify correlated information

[10] or to retrieve data from a quantized and correlated sen-

sor field [11]. The major contribution of this work is to
provide a generalized formulation of the group testing prob-
lem. This generalization is particularly important and useful

to determine optimized strategies to retrieve the informa-

tion from a set of distributed agents and derive a completely

novel class of multiple access techniques that are combined

with compression. Furthermore, we show that the essence

of group testing lies in the fact that it successively refines the

set of possible events through the sequence of tests which

shows similarities with that of arithmetic coding (c.f. Sec-

tion 4). This concept justifies the strategies chosen in classi-

cal group testing problems and provides insight into choos-

ing group testing strategies for general applications.

3. GENERALIZED GROUP TESTING

Consider a set of N agents S = {s1, · · · , sN} and let Xi be

the state of agent si. The set of states X = [X1, · · · ,XN ]
are modelled as a sequence of random variables with the

joint probability distribution pX1,··· ,XN
(x1, · · · , xN ). In

general, the state value of the agent i belongs to the sym-

bol alphabet Ai, where Ai may not be binary, and the dis-

tribution of the states may be correlated. In classical group

testing, e.g. the blood testing problem, each item in the pop-

ulation can be either “defective” or “non-defective”. There-

fore, it is common to model the set of states {X1, · · · ,XN}
as a sequence of i.i.d. Bernoulli random variables with pa-

rameter p = Pr{Xi = 1} = Pr{si is defective} and

pX1,··· ,XN
(x1, · · · , xN ) = p

∑
i xi(1 − p)(N−∑

i xi).

In order to distinguish between the defective and non-

defective items, classical strategies typically choose to im-

pose a question T ≡ {“Are you defective?”} upon all agents

within a group U . If at least one item in the group is defec-

tive, the outcome of the test Z is positive (i.e. Z = 1) re-

gardless of the number of agents that are defective within

the group, while the outcome of the test is negative (i.e.
Z = 0) if and only if all agents are non-defective. When

a positive feedback is observed, a subgroup of agents that

belong to the previous group must be assigned again to a

future (T ′, U ′) test in order to identify specifically which

agent or agents are actually defective. The goal of group

testing is to minimize the expected number of tests L nec-

essary to completely resolve the sequence of states.

Definition 1 A group testing strategy is defined by the group
testing tree (T ,U ,F), where T is the set of questions asked
on each corresponding group determined in U , and F is the
set of possible outcomes (or feedback) of the tests.

To resolve a particular sequence X through group test-

ing, a central agent must impose a sequence of tests T0, T1,

· · · , TL−1 to the groups U0, U1, · · · , UL−1 where the se-

quence of (T,U)-pairs represents a path along the group

testing tree (T ,U ,F) and L is the length of the path, i.e.
the random variable representing the number of tests neces-

sary to reconstruct X. If F is the set of possible feedbacks,

then the node representing the test (T,U) will have |F|
branches extending from itself which leads, respectively, to

another test (T ′, U ′) or terminates at a completely resolved

sequence x. Each different path corresponds to a different

realization of the agents’ information X. However, if there

exists a path in the tree that terminates at more than one

sequence, the proposed strategy would not be able to distin-

guish between these sequences. In order to uniquely resolve

the contents of each agent, the sequence of outcomes result-

ing from the sequence of tests must unambiguously deter-

mine the state of all agents. Therefore, we define a class of

unambiguous group testing strategies as follows:

Definition 2 A group testing strategy (T ,U ,F) is consid-
ered as unambiguous if it uniquely resolves the sequence of
states X = [X0, · · · ,XN−1].

In general, the question Tl that is imposed upon the

group Ul = {si1 , · · · , si|Ul|
} can be seen as asking the

question “Is [Xi1 , · · · ,Xi|Ul|
] = [ai1 , · · · , ai|Ul|

]?”, where

ai ∈ Ai. By imposing the test (Tl, Ul), the outcome Zl

must belong to the set of possible feedbacks Fl which is

equivalent to the output alphabet of the channel between the

central agent and the distributed agents within the group

Ul. For example, in the classical problem, the question

imposed upon a group of size n is typically equal to “Is

[Xi1 , · · · ,Xin
] = [0, · · · , 0]?”. In this case, the response

Zl is equal to 1 if there exists j ∈ Ul such that Xj = 1,

and Zl = 0 otherwise. Therefore, the channel between the

distributed agent and the central node is modelled as the

“noiseless OR channel”, where the answer beared in the re-

ceived signal after each test is

Zl = ∨{j:sj∈Ul}{Xj �= aj} = ∨{j:sj∈Ul}{Xj �= 0}. (1)

Therefore, the feedback signal contains the binary infor-

mation: r.1) all nodes are of the bit 0, i.e. Zl = 0; and

r.2) there exists a node with bit 1, i.e. Zl = 1. Although

the group testing problem addressed in most classical group

testing problems refer to this particular type of multiple ac-

cess channel, one could certainly choose another kind of

channel corresponding to their physical layer implementa-

tion and derive the optimal group testing strategy that would

utilize most efficiently the feedback obtained from that chan-

nel. In fact, different variations of the group testing strategy

was derived for different sets of feedback in [9].

Since each path in an unambiguous group testing strat-

egy leads to a unique sequence of states, the sequence of

outcomes Z = [Z1, · · · , ZL] that routes through this path
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uniquely encodes the information from the distributed agents.

If the group testing strategy is performed optimally, the av-

erage number of tests should not exceed that of testing each

agent individually, i.e. E{L} ≤ N . Therefore, this se-

quence of outcomes contains the lossless information of the

agent’s states, thus, allowing group testing to serve as a

form of source compression technique. Furthermore, since

the type of feedback indicated in (r.1) and (r.2) could be

obtained using the simple transmission of a pulse and an

energy detector at the receiver, this method of scheduling

transmission provides a practical solution for the combined

distributed compression and multiple access problem.

3.1. Complexity
In solving the information retrieval problem in a large sen-

sor networks, the methods mentioned in Section 1 have a

great amount of complexity that makes them difficult to im-

plement. However, in group testing, once the set of tests and

the possible groups are fixed, there are more or less central-

ized architectures that can implement the procedures. The

algorithm could be completely distributed if the feedback

was received by all nodes and all nodes knew how to iden-

tify the next (T,U) pair, i.e. by assuming that each node

has knowledge of the (T ,U ,F) group testing tree.

Leaving aside for a moment the issue of reliability and

optimization of the physical test, as we argued before, a

simple pulse transmission strategy and energy detection at

the receiver could be the physical implementation to con-

vey the desired feedback. In a distributed implementation,

the nodes would know what question to ask in which time

slot by synchronously following the path down the tree that

is routed by the received feedback. Hence, the overhead

involved in this operation could be reduced to that of syn-

chronizing the nodes to a common time frame. This is not

trivial, but there are effective methods to attain synchroniza-

tion and it is certainly less complex than routing a coopera-

tive MIMO transmission, which also have very demanding

synchronization needs. Although, the optimization of the

strategy over all possible choices within the unambiguous

class is NP-Hard [13], the complexity of group testing lies

in the construction of a good sequence of tests, i.e. it is in

the design not in the implementation.

4. GROUP TESTING AND ARITHMETIC CODING

In group testing, the purpose of each test (T,U) is to pro-

vide the central agent with more information about the states

of each agent. After each test, the central agent is able to

eliminate or lower the probability of certain sequences X.

Therefore, the set of probable sequences are refined succes-

sively after each test, thus, allowing the central node to pro-

gressively resolve the state of the agents. Interestingly, the

successive refinement property of group testing coincides

with that of arithmetic coding [12]. In arithmetic coding,

each uncoded sequence is assigned a non-overlapping re-

gion within the interval (0, 1) that is equal to the probability

of that particular sequence. Since the sum of the probability

of all sequences that have the same length is equal to 1, the

non-overlapping regions of these sequences cover entirely

the (0, 1) interval. The regions are constructed such that, for

all m, the regions representing the m-length subsequence

[x0, · · · , xm−1] is nested within the region representing the

(m−1)-length subsequence [x0, · · · , xm−2]. This can be

done since the probability of [x0, · · · , xm−2] is equal to the

probability of [x0, · · · , xm−1] saturated over all values of

xm−1. This standard construction of arithmetic coding al-

lows the encoder to successively refine the region after each

additional symbol is known within the entire sequence. For

a sequence of fixed length N , the encoder will eventually

assign a non-overlapping region to represent uniquely each

particular sequence. The central agent that imposes the tests

serves as an encoder that successively refines the possible

set of sequences until all information is resolved.

Following the concept of arithmetic coding, we con-

struct, in the group testing case, a mapping of each sequence

x onto an interval of length rx = Pr(X = x) within the

(0, 1) interval. Similarly, the interval of each sequence is

nested within the interval of the subsequence that is a prefix

of the original sequence. After each test, the central agent

observes a feedback that allows it to refine the set of possi-

ble sequences by eliminating the interval that corresponds to

the events with zero measure given the information obtained

from previous tests. The refinement process continues until

the path of (T,U)-tests leads to only one sequence within

the refined interval. If a test (T,U) does not contribute in

refining the set (or the interval), this test is considered to be

redundant since no knowledge can be gained through this

test. In view of its successive refinement property, the goal

of group testing is equivalent to finding the fastest way to

eliminate the impossible events (given the increased knowl-

edge from each test) and efficiently identify the exact re-

alization of the sequence. Therefore, it is desirable to de-

sign the tests in our strategy to eliminate at each stage the

largest possible region within the (0, 1) interval in order to

reduce further tests. Based on this concept, we introduce

a group testing algorithm, called the Maximum Refinement
Algorithm (MRA), with the purpose of providing insight into

the successive refinement property of group testing.

Suppose that the channel to be used between the cen-

tral and distributed agents is the noiseless OR channel, as

in most group testing scenarios. In the MRA, the test is de-

signed such that the question Ti imposed upon the group

U∗
i in the i-th test is equal to “Is [Xi1 , · · · ,Xi|Ui|

] = x∗
i ?”,

where the group U∗
i and the sequence x∗

i is defined by:

(U∗
i ,x

∗
i )=arg max

Ui,x
|Ui|·Pr{[Xi1 ,· · ·,Xi|Ui|

]=x|T i−1
0 } (2)

where the conditioning on (T,U)i−1
0 represents the infor-

mation obtained from tests (T0, U0) to (Ti−1, Ui−1). The
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optimal group and the optimal sequence, as defined in (2),

is chosen to maximize the expected number of agents that

are resolved at the present stage.

In general, the best (T,U) test, at each stage, is chosen

over all possible groups and sequences. Therefore, although

we construct the intervals to be nested with respect to their

prefix sequences, we note that the refinement may not be

nested unless the distribution among the states of agents are

spatially homogeneous (since agents that are chosen may

not be consecutive to each other). If a test is negative, mean-

ing that one of the bits in the guessed sequence is wrong,

then we eliminate the interval or intervals representing this

sequence. If the test is positive, then the complement of the

intervals representing this sequence is eliminated which re-

fines the region to the intervals that contain the sequences

of resolved agents. The choice of the test in (2) refines the

interval by a large amount if the answer is positive and re-

duces the number of future tests if the answer is negative.

We note that this method is suboptimal, in general, since it

considers only the step-by-step optimization instead of con-

sidering all possible events that may occur in future tests.

4.1. Independent Bernoulli Case
In the classical setting, the state of agents are modelled as

i.i.d. Bernoulli random variables with parameter p. The typ-

ical question that is asked for a group of length m is equal

to “Is [Xi1 , · · · ,Xim
] = [0, · · · , 0]?”. From the point of

view of maximizing the refinement of each test, the choice

of asking the all 0 sequence is optimal for p < 1/2 since

the probability of this sequence has the highest probability

among all sequences of the same length. However, this is

not true when the probability p > 1/2. In this case, the all

1 sequence has the highest probability of occurring over all

other sequences. This property was remarked by Berger in

[9] where the reversing technique was applied to choose the

all 1 sequences as questions when p > 1/2. However, with-

out applying the reversing technique, the best strategy for p
larger than a certain cutoff point p∗ = 1

2 (3−
√

5) would be

no better than to test each node individually (see e.g. [9]).

In Fig. 1, we compare the performance of the MRA to

that of the Recursive Algorithm shown in [9] without ap-

plying the reversing technique. We notice that even with

the inferior property of not considering completely the fu-

ture events in our algorithm, the MRA still achieve an av-

erage number of tests that is close to the optimal recursive

method. This shows that the successive refinement property

is truely the essence of group testing since it contributes the

most to its performance. (In fact, for p > 1/2, the MRA

performs optimally in choosing only one agent in each test.)

This provides us with great insight in designing group test-

ing strategies for other generalized applications.
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