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Abstract— We propose to develop wireless Sensor Networks
with Mobile Sinks (MSSN), under high sensor node density,
where multiple sensor nodes need to share one single com-
munication channel in the node-to-sink transmission. Under
the guideline of trading network energy consumption for the
successfully retrieved packets, optimal and suboptimal trans-
mission scheduling algorithms, which exhibit exponential and
linear complexity respectively, are discussed under the desired
application. The computer simulations show that the suboptimal
algorithms perform nearly as good as the optimal one.

I. INTRODUCTION

Sensor Networks with Mobile Sinks (MSSN) [1], [2] was
proposed for two application areas, which are environment
monitoring systems with high latency tolerance and intelligent-
space. This new architecture features high energy-efficiency,
because the multi-hop transmission of high volume data over
the network is converted to single-hop transmission. Addi-
tional advantages of MSSN include infrastructure free, high
security, and ease of implementation. We discussed the trans-
mission scheduling algorithm TSA-MSSN [1] in a sparsely
deploying network setup, where it is assumed that only one
sensor node is communicating with the mobile sink on a given
channel.

However, when the density of sensor networks increases,
multiple nodes can be within the transmission range to the
sink, and the assumption of a sparsely deploying setup no
longer holds. When multiple radio channels are available, the
sink can assign one such distinctive channel to any individual
node. The TAS-MSSN can then operate on different channels
respectively. However, when the number of nodes exceeds the
number of channels, multiple nodes will need to share one
channel. Thus, more complicated scheduling algorithms are
needed.

Under different types of wireless networks, there are numer-
ous works investigating the desired scheduling problem. Under
cellular networks, from an information theoretic approach,
[4] showed that, to maximize the total uplink capacity, it is
sufficient to have only the user with the strongest channel
to the base station transmit at any given time. Such power
control scheme is known as multiuser diversity. Although
strategies in [4] are optimal in the sense of capacity, in the
service layer implementations, more QoS factors should be
considered, such as fairness, delay, and connection admission
control (CAC) [5]. In the area of sensor networks, the recent
work on SENMA [10] studied the sensor network topology

similar to MSSN, and proposed distributed scheduling algo-
rithms. However, SENMA assumes a simple reachback sensor
network, which differentiates it from the proposed MSSN.

Compared to the existing works, the MSSN is distinctive for
the following considerations. In MSSN, the objective of the
scheduling algorithm is to transmit all integrated/compressed
information [6] stored on sensor nodes with the minimum
energy consumption. Combined with the mobility of the sink,
this guideline makes the system design different from the con-
ventional wireless networks. More specifically, in the MSSN
transmission scheduling, we exploit the tradeoff between the
probability of successful information retrieval and the nodes
energy consumption, under the delay limitations imposed by
the sink mobility. Instead, in conventional wireless networks,
“throughput” is generally emphasized, which is the number of
the retrieved packets per second.

II. SYSTEM DESCRIPTION AND OPTIMAL ALGORITHM

The optimal multiple nodes transmission scheduling al-
gorithm (MTSA-MSSN) is an extension of the TSA-MSSN
in [1]. Consider the sink having an estimation of its own
current velocity and direction of mobility, which can be
obtained from the Global Positioning System (GPS). MTSA-
MSSN is run at the beginning of every communication time
slot. One time slot is composed of the transmission of two
different packets in sequence, which are the acknowledge
(ACK) packet from the sink, and the data packet from the
sensor nodes respectively. The obtained scheduling strategy
can then be piggybacked on the ACK packets broadcasted by
the sink to the associated sensor nodes. The ACK packets, on
the other hand, also serve to acknowledge successful or failed
data transmission in the previous time slot.

We do not assume the future mobility pattern is available
at the sink. Instead, in MTSA-MSSN, we make two approx-
imations. Let N denote the number of nodes sharing one
communication channel. First, we assume that no new node
is admitted to the channel until all N nodes have finished
the transmission. Second, we estimate that the mobility of the
sink maintains constant in future time slots. Both the two are
realistic approximations, since the scheduling algorithm is run
at the beginning of every time slot, where both the nodes and
the sink mobility information are updated. As shown in the
following, they generate a simplified system model as well.
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A. System Description

Let Range denote the communication range of the sen-
sor node, which is assumed the same to all nodes. Let
{L1, . . . ,LN} denote the location of N sensor nodes respec-
tively, which are assumed to be fixed throughout the trans-
mission. At time slot i, let {Kn(i)|n = 1 . . . N} denote the
number of packets awaiting transmission at node n. Assume
the location, direction and speed of the sink are Ls(i), θs(i),
vs(i) respectively. Then, the system state is composed of these
2N + 3 parameters,

E(i) = {Ls(i), θs(i), vs(i),L1, . . . ,LN,K1(i), . . . , KN (i)} .
(1)

Let Dn(i) denote the distance between the sink and the
sensor node n, n = 1 . . . N . Then, the communication channel
gain for the node n can be modeled as [8],

Gn(i) = 10 · log(A) − 10β · log (Dn(i)) + ξ (dB), (2)

where A is a constant decided by the antenna gain, β is the
path loss exponent decided by the propagation environment,
and ξ is a random variable under normal distribution N(0, σ2

ξ ),
indicating the shadowing effect.

At every time slot, we estimate that the mobility of the sink
would be maintained as a constant when it passes through
all the N circular regions, which are centered at Ln with
the radius Range respectively. Let Tn(i) denote the estimated
transmission time slots available for node n, n = 1 . . . N . We
have,

Tn(i) =
‖Ls(i) − Ls out,n‖

vs(i) · ∆t
, (3)

where ∆t = Fd+Fb

R . Fd and Fb are the size of the data and
ACK packets respectively. R is the transmission data rate.
Ls out,n is defined as the point at which the sink goes out
of the communication range of the sensor node n. Let,

T (i) = max
n=1...N

{Tn(i)} . (4)

If i0 denotes the current time slot, the series of estimated
states can be defined as,

Ê(i0) =
{

Ê(i0), Ê(i0 + 1), . . . , Ê(i0 + T (i0) + 1)
}

, (5)

where Ê(i0) is known as,

Ê(i0) = E(i0). (6)

Obviously, the size of each estimated state {Ê(i), i0 < i ≤
i0 + T (i0) + 1} is decided only by {Kn(i0)}, which is∏N

n=1 (Kn(i0) + 1).
The supposed transmission strategy at a future time slot

i, i ≥ i0, S(i) is decided by two parameters, S(i) =
{Node(i), Pt(i)}, where Node(i) ∈ {1 . . . N} denotes the
ID of transmitting node in time slot i. Pt(i) is, on the other
hand, the transmission power at the sensor node Node(i). We
consider the transmission power is of discrete levels, and the
number of optional levels is Sizeof {Pt}. Given Ê(i) and
S(i), Ê(i + 1) is not related to any previous states before i.

Thus,
{

Ê(i)
}

can be modelled as a Markov chain in time
domain. Assuming that only one packet can be transmitted in
one time slot, and every lost packet will be retransmitted in the
next assigned slot, the state transferring probability function
is here given by,

P
(
Ê(i + 1)|Ê(i), Pt(i), Node(i)

)
=⎧⎪⎪⎨

⎪⎪⎩
ˆPER(i), K̂n(i + 1) = K̂n(i), n = 1 . . . N

1 − ˆPER(i), K̂Node(i)(i + 1) = K̂Node(i)(i) − 1,

K̂n(i + 1) = K̂n(i), for all n �= Node(i)
0, others

i = i0 . . . i0 + T (i0)

,

(7)
where ˆPER(i) is the estimated packet error rate of transmis-
sion in future time slot i. Consider a BPSK modulated uncoded
data packet and the sink is unaware of the shadowing effect
ξ, ˆPER(i) can be written as [7],

ˆPER(i) = 1 −
⎛
⎝1 − Q

⎛
⎝

√
2Pt(i) · ˆDNode(i)(i)−β

σ2
n

⎞
⎠

⎞
⎠

Fd

,

(8)
where σ2

n is the noise power.

B. Optimal MTSA-MSSN Strategy

At current time slot i0, the objective of MTSA-MSSN is
to decide S(i0) so as to maximize the number of successfully
transmitted packets while minimizing the energy consumption.
However, these two goals can not be achieved simultaneously.
Similar as TSA-MSSN in [1], we search the optimal strategy
S∗ (E(i0)) = {Node∗(E(i0)), P ∗

t (E(i0))} by maximizing an

utility function J
(
S(i0), Ê(i0)

)
,

S∗ (E(i0)) = arg max
S(i0)

{
J

(
S(i0), Ê(i0)

)}
, (9)

where,

J
(
S(i), Ê(i)

)
= J

(
Node(i), Pt(i), Ê(i)

)
=∑

Ê(i+1) maxS(i+1)

{
J

(
S(i + 1), Ê(i + 1)

)}
·

P
(
Ê(i + 1)|Ê(i), Pt(i), Node(i)

)
− λ

max{Pt(i)} · Pt(i)
i = i0, . . . , i0 + T (i0)

.

(10)
In Eq.(10), λ is a coefficient deciding the tradeoff between
the cost of energy consumption and the credit of successful
packet transmission.

At the final state of the algorithm, i = i0 + T (i0) + 1,
the utility function is decided only by the system state. The
definition of J

(
Ê(i0 + T (i0) + 1)

)
is, however, application

dependent. Suppose that each packet is equally credited, say
“1”, it can be defined as,

J
(
Ê(i0 + T (i0) + 1)

)
=

N∑
n=1

{
Kn(i0) − K̂n(i0 + T (i0) + 1)

}
.

(11)
Because the size of the system state,

∏N
n=1 (Kn(i0) + 1),

increases exponentially with the number of nodes N , the
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complexity of optimal algorithm also increases exponentially
with N . To solve this, we further investigate suboptimal
algorithms.

III. SUBOPTIMAL ALGORITHMS

In developing suboptimal algorithms, the idea is to run TSA-
MSSN (i.e. N = 1) algorithm individually for each node
n, and combine the N individual strategies to decide the
suboptimal multiple-access transmission strategy Ss(E(i0)).
As presented in [1], the complexity of TSA-MSSN can be
reduced to O(1), when a feasible storage capability is available
on the sink. The complexity of suboptimal algorithms equals
to the N-time runs of TSA-MSSN with the same sized storage
on the sink, which is O(N).

A. Preprocessing: TSA-MSSN Runs

TSA-MSSN was detailed in [1]. At current time slot i0,
let En(i0) denote the system state on node n. After the
preprocessing we obtain the TSA-MSSN power decision on
each node,

{
P ∗

t,n (En(i0)) |n = 1 . . . N
}
. Suboptimal algo-

rithms operate in different ways in deciding Nodes (E(i0)) ∈
{1 . . . N}, and,

P s
t (E(i0)) = P ∗

t,Nodes(E(i0))

(
ENodes(E(i0))(i0)

)
. (12)

B. Suboptimal Algorithm I: Maximal Sensor Power Strategy

The strategy here is to choose the node with maximum
P ∗

t,n (En(i0)) as the transmitting node, that is,

Nodes (E(i0)) = arg max
n

{
P ∗

t,n (En(i0))
}

, (13)

and P s
t (E(i0)) is obtained through Eq.(12).

C. Suboptimal Algorithm II: Maximal Sensor Utility Strategy

Based on the TSA-MSSN preprocessing results, Maximal
Sensor Utility Strategy (MSUS-MSSN) chooses the node with
the maximal achievable TSA-MSSN utility summation, which
is defined as,

Un (E(i0)) =
∑N

p=1;p �=n

{
Jp

(
0, Êp(i0)

)}
+

Jn

(
P ∗

t,n (En(i0)) , Ên(i0)
) . (14)

We have,

Nodes (E(i0)) = arg max
n

{Un (E(i0))} , (15)

and P s
t (E(i0)) is obtained through Eq.(12).

D. Implementation

To draw an analytical performance comparison between
optimal and suboptimal algorithms is difficult. However, one
should avoid a certain condition in suboptimal algorithms,
where the TSA-MSSN power decision is zero for all node,
which is,

P ∗
t,n (E(i0)) = 0, n = 1 . . . N. (16)

Under the condition, all suboptimal algorithms will keep every
node sleeping in the current time slot i0. The optimal MTSA-
MSSM performs strictly better, since it avoids this restriction

by jointly deciding the transmission over all N nodes. The
condition can be avoided by running the channel selection
algorithm for one specific node n only when it is active,
i.e. P ∗

t,n (En(i0)) > 0. The criterion, on the other hand, also
enhances the spectrum efficiency by keeping all the occupied
channels busy. The details about implementations are omitted
here for space saving, and can be found in [2].

IV. SIMULATIONS

The following simulations scenario is considered. The sink
is passing through the sensor network region. The setup
of communication parameters generally complies with IEEE
802.15.4 [3], and is listed in Table 1. The number of trans-
mission power levels is set to 10, which is,

Pt(i) ∈ { −∞,−32,−28,−24,−20,
−16,−12,−8,−4, 0} (dBm). (17)

λ, which is the parameter to decide the tradeoff between
successful transmission and energy consumption, is set as “1”.

Table 1. Communication Parameters Setup
Parameter Unit Value

Fd bit 128 × 8
Fb bit 20 × 8
R bits/sec 20000
β 3
A dB −31

Range m 50
σ2

n dBm −92
vs(i) m/sec 20

Simulations are performed to measure the energy con-
sumption Eall and successfully transmitted packets Pall of
MTSA-MSSN, MSPS-MSSN, and MSUS-MSSN respectively.
In calculating the energy consumption, we however omit the
RF circuits energy consumption, since it is the same for all
algorithms. The definitions of Eall and Pall are thus,

Eall =
i0+T (i0)∑

i=i0

P r
t (i) · Fd

R
, (18)

Pall =
N∑

n=1

{Kn(i0) − Kn(i0 + T (i0) + 1)} , (19)

respectively, where,

P r
t (i) =

{
P ∗

t (E(i)), for optimal;
P s

t (E(i)), for suboptimal
. (20)

We assume two sensor nodes are sharing with one specific
communication channel, which is N = 2. Without loss of
generality, let L1 = [−5, 5], L2 = [0,−4], and K1(i0) =
K2(i0) = 10. Set θs(i) = 0. With Ls(i0) = [22, 0], the sink
passes through the circular communication region of the nodes.
Fig. 1 & 2 plot the curve of Eall and Pall respectively when
σ2

ξ changes. The results are averaged over 500 Monte-Carlo
runs.

The energy consumption Eall of MSPS-MSSN is much
higher than the other two algorithms everywhere, however, it
also has a higher Pall than others when σ2

ξ is relatively small.
Compared with MSPS-MSSN, the MTSA-MSSN and MSUS-
MSSN offer a better tradeoff between energy consumption
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Fig. 2. Case I: successfully transmitted packets Pall vs. σ2
ξ

and successful transmission rate. Although MTSA-MSSN is
theoretically optimal and has a much higher complexity, the
suboptimal MSUS-MSSN surprisingly performs at least as
good as MTSA-MSSN in the simulation. When σ2

ξ is small,
MTSA-MSSN outperforms MSUS-MSSN by a little, as shown
in Fig. 1 & 2. However, when σ2

ξ become large, the suboptimal
MSUS-MSSN is better than the optimal algorithm in both
energy consumption and successful transmission rate. The
result may seem to be abnormal at the first glance. This
is, however, due to the fact that scheduling algorithms are
unaware of the shadowing effect of the channel in Eq.(2). Sub-
optimal MTSA-MSSN chooses a higher transmission power
level, which consumes more energy on one hand, enhances the
probability of successful transmission on the other. Generally,
suboptimal algorithms are efficient alternatives to the optimal
one. Especially for the MSUS-MSSN, it performs as good as
the optimal algorithm in terms of total energy consumption
Eall and successful transmission rate Pall.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we have studied the operation of sen-
sor networks with mobile sinks when multiple nodes share
one communication channel during transmission. First, we
have developed the optimal multi-node scheduling algorithm

MTSA-MSSN. As the complexity of MTSA-MSSN increases
exponentially with the number of nodes, we propose sub-
optimal algorithms based on the idea of running the single
node scheduling algorithm TSA-MSSN individually on each
node and then combining the results. The two suboptimal
algorithms, MSPS-MSSN and MSUS-MSSN, exhibit com-
plexity as low as O(N). The performances of optimal and
suboptimal algorithms are compared by means of computer
simulations. The suboptimal algorithms achieve nearly the
same performance as the optimal MTSA-MSSN.

It is interesting to compare the multiple access MSSN with
the recently proposed SENMA [10], [11]. Although the two
have similar network topology, they are of different types
of networks. In MSSN, we assume certain signal processing
capability on individual sensor nodes. The inter-node signal
processing, e.g. [12], is considered implementable. SENMA,
on the other hand, assumes a simple reachback sensor network,
where the sensor nodes acquire the data and transmit it
directly to the sink, with no inter-node signal processing.
Moreover, the sink is dominant in MSSN, since deterministic
scheduling is decided by the sink. SENMA is a sensor-nodes
dominant network in the sense that random access scheduling
is adopted. SENMA claims low complexity of the sensor
nodes. MSSN, however, has higher efficiency and application
specific flexibility [1], since the transmission of unnecessary
correlated packets is avoided. The choice between the two
should be dependent on the requirements of applications.
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