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ABSTRACT
We consider the problem of a single parameter estimation by a

sensor network with a fusion center (FC). Sensor observations are

corrupted by additive noises which can have arbitrary spatial cor-

relation. Due to a bandwidth constraint each sensor is only able to

transmit a finite number of bits. The fusion center combines mes-

sages from the sensors to produce a parameter estimator, which

is required to have Mean Square Error (MSE) within a constant

factor of that of the Best Linear Unbiased Estimator (BLUE). We

show that total sensor transmitted power can be minimized while

meeting target MSE requirement if quantization levels are deter-

mined jointly by the fusion center using the knowledge of noise

covariance matrix. By numerical examples we show that energy

saving up to 70% can be achieved when compared to uniform

quantization strategy when each sensor generates the same number

of bits.

1. INTRODUCTION

A typical wireless sensor network (WSN) consists of a fusion cen-

ter and a large number of sensors, which are spatially distributed

to monitor parameters of interest. Sensors are limited in their com-

putation and communication capabilities due to limited power sup-

ply. Each sensor makes a measurement of the parameter, generates

a local message, and sends it to the fusion center (FC), while the

fusion center combines received messages to produce a final esti-

mator of the parameter.

Power and bandwidth limit the length of messages and the data

rates. Recently, several decentralized estimation schemes (DES)

[1]-[4] have been proposed for parameter estimation in the pres-

ence of additive sensor noise. These DESs require each sensor

to send only a few bits to the FC, and the message length is de-

termined by the sensor’s local SNR. Performance of the resulting

estimator is shown to be within a constant factor of the Best Linear

Unbiased Estimator (BLUE) performance.

Since sensors have only small size batteries, minimization of

sensor power consumption is important to ensure the lifespan of

a WSN. In [5] optimal coded and uncoded transmission strategies

are proposed for sensor networks in order to minimize required

energy per bit. In the recent work of [6], the authors consider

the problem of optimal power allocation for decentralized estima-

tion where sensor measurements are corrupted by additive noises,

while communication links from sensors to the FC differ in qual-

ity. The authors of [6] consider an adaptive modulation scheme for
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message transmission which leads to the exponential dependence

of energy on the message size. Then optimal power and quantiza-

tion levels for sensors are decided jointly at the FC.

All the work mentioned has been done under the assumption

that observation noises are spatially uncorrelated. However, sen-

sors in the network may have correlated observations, for example,

in case when they are densely deployed in the field. In our work,

we consider parameter estimation in case when sensor observa-

tions are corrupted by additive noises which are spatially corre-

lated with known correlation matrix. We assume that transmission

of each bit requires a constant amount of energy, dependent on the

quality of the channel between a sensor and the fusion center.

We use the following notations. Diagonal matrix with nonzero

elements a1, . . . , aN is denoted by diag(a1, . . . , aN ). For any

real number x ∈ R, we denote �x� to be the smallest integer

greater or equal to x. For any random variable R, we use E R
to denote expected value of R and var R to denote variance of R.

2. PROBLEM FORMULATION

We consider a problem of estimating unknown parameter θ by a

sensor network consisting of N sensors. Measurement of each

sensor xi is corrupted by additive noise ni, so that

xi = θ + ni, i = 1, . . . , N.

We assume that both θ and ni have finite range, so that all xi be-

long to a common finite interval [−U, U ], with U > 0 a known

constant. The noises ni are assumed to be zero mean and corre-

50 100 150 200 250 300 350 400

50

100

150

200

Fig. 1. Decentralized estimation scheme
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lated across sensors with covariance matrix C, but otherwise un-

known. Measurements xi are quantized to produce messages mi

to be passed on to the FC, which combines received messages in

order to estimate θ.

We assume that sensors send messages using a TDMA scheme

and the channel between each sensor and the FC is corrupted by

Additive White Gaussian Noise (AWGN) with power spectral den-

sity N0/2. The signal power received at the FC is assumed to be

inversely proportional to dκ
i where di is the distance between sen-

sor i and the FC, and κ is the path loss exponent. Suppose that

message mi has length bi bits. Let us assume that energy Wi re-

quired for transmission of mi is proportional to the number of bits

in the message. This is the case e.g., if sensors use MQAM or

MPSK modulation to transmit messages. For example, if MQAM

is used, Wi can be found as follows [5]:

Wi =
2

3
NfN0G0d

κ
i (2s − 1) ln

(
4(1 − 2−s)

sPb

)
bi

s
,

where s = log M is the number of bits per symbol, Nf is the re-

ceiver noise figure, Pb is the required bit error probability, and G0

is the system constant defined as in [5].

In case when mi = xi, BLUE estimator for θ is known to

be [7]

θ̂ =
1T C−1x

1T C−11
,

where x = (x1, . . . , xN )T and 1 is the vector of all ones. Esti-

mation performance is characterized by variance of the estimator

var θ̂ = (1T C−11)−1. We assume that the FC has full knowl-

edge of correlation between sensors. Upon receiving sensor mes-

sages mi, the FC combines them into an estimator θ̄ as given by

the expression below:

θ̄ =
1T C−1m

1T C−11
, (1)

where m = (m1, . . . , mN )T . We can write the following se-

quence of equalities:

MSE(θ̄) = E(θ̄ − θ)2 = E(θ̄ − θ̂ + θ̂ − θ)2

= E(θ̄ − θ̂)2 + E(θ̂ − θ)2

= E

(
1T C−1(m − x)

1T C−11

)2

+ var θ̂

=

(
1T C−1QC−11

1T C−11
+ 1

)
var θ̂,

where Q = E(m − x)(m − x)T is the matrix of quantization

noise. Here in the third step we have used the fact that cross term

E(θ̄ − θ̂)(θ̂ − θ) = 0, as θ̂ is independent of mi and unbiased.

We wish to optimize the transmission energy while maintain-

ing the estimation performance within a constant factor of BLUE

performance, i.e. MSE(θ̄) ≤ (1 + α) var θ̂ for some constant

α > 0. Therefore, the following condition must hold

1T C−1QC−11

1T C−11
≤ α. (2)

The total energy is equal to W =
∑N

i=1 Wi =
∑N

i=1 wibi, where

wi is the energy required for transmission of a single bit from sen-

sor i to the FC. Our goal is to determine the set of integer num-

bers {bi} such that W achieves its minimum provided MSE con-

dition (2) is satisfied.

3. QUANTIZATION STRATEGY

Suppose that sensor observation xi is bounded to a finite interval

[−U, U ]. Suppose further that we wish to quantize xi in such a

way that resulting message mi has length bi bits, where bi is to be

determined later. We therefore have Ki = 2bi quantization points

{a(i)
j ∈ [−U, U ], j = 1, . . . , Ki}. These points are placed so that

a
(i)
1 = −U < a

(i)
2 < . . . < a

(i)
Ki

= U , and a
(i)
k+1 − a

(i)
k = ∆i for

every k. It is easy to see that ∆i = 2U/(Ki − 1). Suppose that

xi ∈ [a
(i)
k , a

(i)
k+1). Then xi is mapped into the point a

(i)
k+1 with

probability p and into a
(i)
k with probability 1 − p. Namely,

Pr(mi = a
(i)
k+1) = (xi − a

(i)
k )/∆i = p,

Pr(mi = a
(i)
k ) = (a

(i)
k+1 − xi)/∆i = 1 − p.

This probabilistic mapping produces messages with E mi = xi,

where expected value is taken with respect to randomization. There-

fore, θ̄ is an unbiased estimator for θ. Unbiasedness of the quan-

tization strategy described together with the fact that random vari-

ables mi and mj are conditionally independent given xi and xj

for all i �= j leads to the following important property.

Lemma 1. The quantization noise matrix Q is diagonal.

Further, the maximal variance of mi is equal to ∆2
i /4. Let Qi

be the i-th diagonal element of Q. We have Qi ≤ U2/(2bi − 1)2.

4. TOTAL ENERGY MINIMIZATION

Introducing notation c = C−11and β = α/ var θ̂, we can rewrite

(2) as cT Qc ≤ β. Since the distribution of x is unknown in gen-

eral, we enforce a stronger condition: max cT Qc ≤ β. Recalling

that Q is diagonal, we can write max cT Qc = max
∑N

i=1 Qic
2
i =∑N

i=1 U2c2
i /(2bi − 1)2. Since bi can only take integer values, the

problem of energy minimization subject to MSE constraint is ac-

tually a non-convex integer programming problem. We relax bi to

take real positive values and formulate the following optimization

problem:

minimize
∑N

i=1 wibi

subject to
∑N

i=1

c2
i

(2bi − 1)2
≤ β

U2
,

bi > 0, i = 1, . . . , N.

(3)

Without loss of generality we consider case when ci > 0 for all i.
In case ci = 0 for some sensors we can exclude corresponding mi

from consideration, as they do not contribute to θ̄. Solution to

problem (3) can be efficiently found by the FC using the interior

point method [8]. Then the FC can round the solution to the near-

est greater integer and broadcast it to the sensors. However, here

we will present a closed form approximately optimal solution to

the problem. We drop the last constraints on bi as they become

inactive at the optimum point. Associating a dual variable λ with

the MSE constraint we write the Lagrangian for the problem as

follows:

L(bi, λ) =
N∑

i=1

wibi + λ

(
N∑

i=1

c2
i

(2bi − 1)2
− β

U2

)
.

At the point of optimum we must have ∂L/∂bi = 0 for all i, which

leads to the following set of conditions:

2bi

(2bi − 1)3
=

wiλ
′

c2
i

, (4)
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where λ′ = 1/2λ ln 2. The complementary slackness condition

yields
N∑

i=1

c2
i

(2bi − 1)2
=

β

U2
. (5)

As the reader can verify, optimal solution {bi} cannot be found in

the closed form from the system (4)-(5). For this reason, we will

find a feasible solution {b∗i }, which will be used as an approxima-

tion to {bi}. Namely, we impose

N∑
i=1

c2
i

(2b∗i − 1)2
=

β

U2
(6)

as well as the following equality

2b∗i − 1

(2b∗i − 1)3
=

1

(2b∗i − 1)2
=

wiλ
∗

c2
i

(7)

for some λ∗. Note that the condition (7) is a modification of (4).

Clearly, such a solution is unique, and parameter λ∗ can be found

from (6) and (7) as

λ∗ =
β

U2

( N∑
i=1

wi

)−1

. (8)

Approximation b∗i can be found explicitly from (7) and (8) to be

b∗i = log

(
1 +

|ci|√
λ∗wi

)
. (9)

Now suppose that optimal solution {bi} is such that bi ≥ 1 for

all i. Then the following bound holds true.

Lemma 2. Let {bi} be the optimal solution to the problem (3)
such that bi ≥ 1 for all i, and let {b∗i } be its approximation defined
by (9). Then

b∗i − 1

2
< bi < b∗i +

1

2
. (10)

We conclude that |bi − b∗i | < 1. Thus, rounded optimal solu-

tion �bi� is at most one bit away from �b∗i �. We can interpret this

result as follows: in situation when bi are sufficiently large, e.g.

when high estimation precision is required, the optimal solution

behaves approximately as log(1 + |ci|/√wi).

5. NUMERICAL RESULTS

In this section, we present numerical simulation to compare the

transmission energy of quantization using the closed form approx-

imate solution (9) to that of uniform quantization when all sensors

quantize their observations to the same number of bits to achieve

the same MSE. Let us denote by b the number of bits used in case

of uniform quantization. We can find the minimal Wuniform using

the MSE constraint to be

Wuniform =

⎡
⎢⎢⎢log

⎛
⎝1 +

√√√√U2

β

N∑
i=1

c2
i

⎞
⎠

⎤
⎥⎥⎥

N∑
i=1

wi.

The optimal energy obtained by relaxing {bi} to take on real

values is a lower bound on the actual optimal energy. If we round bi

up to the closest integer �bi�, we can obtain an upper bound (de-

noted by W opt) on the actual energy. Even though we use �b∗i �

to approximate the actual optimal solution, significant energy can

be saved when compared with the uniform quantization strategy

in which each sensor quantizes the signal into the same number of

bits to achieve the same target distortion. The percentage of saving

is defined as (Wuniform − W opt)/Wuniform × 100.

For a positive random variable R we define normalized devia-

tion of R to be
√

var R/ E R, which will be used as a measure of

the absolute heterogeneity of R. The sensor noise variances {σ2
i }

are taken to be σ2
i = 1 + a2Zi, where Zi are i.i.d. random vari-

ables with Zi ∼ χ2
1(z). As can be easily verified, {σ2

i } are also

i.i.d. with σi ∼ χ2
1((x−1)/a2). We control heterogeneity of sen-

sor noise variances by varying the parameter a. We suppose that

only i-th and i + 1-th sensors have nonzero noise correlation for

all i, in other words, C is a tridiagonal matrix.

In all simulations, the total number of sensors N = 200. The

correlation coefficient for each pair of sensors is taken to be 0.2.

Since all coefficients wi are scaled by a common factor, {wi} are

taken to be channel path losses wi = dκ
i .

Assume that the target estimation performance is fixed. From

Fig. 2 we can see that the amount of energy saving becomes sig-

nificant when the local noise variances become more and more

heterogeneous, supposing that sensors have identical wi. In Fig. 3,

we plot the percentage of energy savings versus the heterogene-

ity of channel gains, supposing that sensors have same observation

noise variances. Here we suppose that all sensors are uniformly

distributed inside a unitary disk whose center is at the FC. It is easy

to show that in this case normalized deviation of wi depends only

on κ. In our simulation, we choose 1 ≤ κ ≤ 8. We observe that

percentage of saving depends more on the heterogeneity of sensor

noise variances than that of channel gains. This can be understood

regarding expression (9) for b∗i , where in the logarithm, the quan-

tity depends on the distribution of ci, but only on the distribution

of 1/
√

wi.
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Fig. 2. Percentage of energy saving increases when sensor noise

variances become more heterogeneous.
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Fig. 3. Percentage of energy saving increases when channel gains

become more heterogeneous.

6. LOCAL SENSOR COOPERATION

We have seen that our suboptimal solution works well in terms of

energy saving. Let us now consider a special case when the use

of {b∗i } is especially appealing. Suppose that covariance matrix

C has a block-diagonal structure: C = diag(C1, . . . ,Cn). This

situation may occur when sensors in the network are partitioned

into several groups in such a way that sensors within each group

are placed relatively close to each other and far from the rest of

the sensors. Thus, only the observations of sensors belonging to

one and the same group have nonzero correlation. In this case ma-

trix C−1 is also block-diagonal: C−1 = diag(C−1
1 , . . . ,C−1

n ).

We assume further that sensors within each group can cooperate

to learn the corresponding covariance sub-matrix Cj . Then quan-

tization levels bi can be found in a distributive manner as follows.

Value of λ∗ can be computed by the FC and broadcasted back to

the sensors. Then each sensor can easily compute ci = [C−1
j 1]i

and independently find its own quantization level b∗i . The advan-

tage of this method is that the FC needs to broadcast only one uni-

versal message for all sensors as opposed to the case of general C
when all quantization levels bi need to be broadcasted.

7. MINIMAX FORMULATION

Minimizing total transmission energy results in sensors having dif-

ferent lifetime. An alternative approach is to minimize maximal

energy Wi which leads to maximum network lifetime. Relax-

ing {bi} as in (3), we can state the problem as follows:

minimize max
i

wibi

subject to
∑N

i=1

c2
i

(2bi − 1)2
≤ β

U2
,

bi > 0, i = 1, . . . , N,

(11)

or alternatively

minimize max t
subject to wibi ≤ t∑N

i=1

c2
i

(2bi − 1)2
≤ β

U2
,

bi > 0, i = 1, . . . , N.

(12)

It can be shown by analyzing the KKT conditions for (12) that

at the optimum point equality wibi = topt must hold for all i,
where topt can be found as a solution to the following equation

N∑
i=1

c2
i

(2
t

wi − 1)2
=

β

U2
. (13)

The solution topt is unique due to the monotonicity of the left hand

side function in (13). The FC can solve (13) and broadcast topt to

the sensors, which in turn can determine their quantization levels

locally. In this case sensor lifetime is not affected by transmitted

power.

8. CONCLUSION

We have shown that total transmission energy consumption in a

WSN can be minimized if quantization levels for sensors are de-

termined jointly by the FC using information about correlation of

sensor observations. We have also presented an approximate sub-

optimal solution to the energy minimization problem achieving the

same target estimation performance as the optimal solution. It is

shown by numerical simulations that energy saving up to 70% can

be achieved compared to uniform quantization when each sensor

sends the same number of bits.
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