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ABSTRACT

In this paper we utilize decentralized channel state informa-
tion (CSI) for designing optimal transmission schemes for
slotted ALOHA sensor networks that have multi-packet re-
ception capability. We prove that under certain conditions
the optimal transmit probability function is deterministic,
i.e. it is optimal for sensors to either transmit or not trans-
mit with certainty depending on their channel states. We
present a provably convergent stochastic approximation op-
timization algorithm to estimate the optimal transmit policy.
Numerical studies illustrate the performance of the algo-
rithm and the degenerate, non-randomized structure of the
optimal transmission policy.

1. INTRODUCTION

The simplicity and distributed nature of ALOHA make it

particularly attractive for sensor networks. Traditionally,

ALOHA is based on the collision model which assumes that

all packets are lost when two or more users transmit at the

same time. However, this is not the case in many commu-

nication systems such as CDMA systems. [2] introduced

the Multi-Packet Reception (MPR) model that allows mod-

elling systems where one or more packets can be received

correctly with probabilities in the presence of simultane-

ous transmissions. Important results related to this MPR

model include the possibility of a positive stable asymptotic

throughput [3], [11],[4] and an algorithm to achieve the best

asymptotic throughput [3] without CSI. The introduction of

MPR model has great impact on the studies of ALOHA.

However, its two limitations are the decoupling between

the physical (PHY) layer and the MAC layer and the total

symmetry between users. [1] proposed a Generalized MPR

(G-MPR) model that interfaces the two layer: the reception

of packets depends not only on the number of user trans-

mit but also on the channel states of the transmitting users.

Under this reception model it is natural to design transmis-

sion algorithms using a cross-layer approach, i.e. taking
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into account the channel states of users. [1] gives bounds

on the maximal achievable asymptotic throughput under G-

MPR. [1] also gives an expression for the maximum stable

throughput for finite user slotted ALOHA systems deploy-

ing G-MPR. In this paper we follow the G-MPR model and

use a cross-layer approach to design optimal transmission

algorithms for sensor networks.

The contributions of this paper include:

1. We prove that under certain conditions the optimal

transmission policy has a non-randomized structure:

it is optimal for sensors to transmit with probabilities

0 or 1 depending on the channel states. This is a sur-

prising result as probabilistic transmissions are nec-

essary under the collision model or the MPR model

without CSI [3].

2. We propose a provably convergent stochastic algo-

rithm to estimate optimal transmission probabilities

for a finite-sensor slotted ALOHA system deploying

the G-MPR model in [1]. We illustrate the perfor-

mance of the algorithm in numerical examples.

Utilizing decentralized CSI for optimal transmissions

we obtain a variant of slotted ALOHA that is highly scal-

able and efficient. These properties are particularly useful

for sensor networks where the number of nodes is large and

energy is an important issue.

This paper is organized as follows: Section 2 briefly

covers the system model and problem formulation. Section

3 gives a theorem on the structure of the optimal transmis-

sion policy. We propose a stochastic approximation algo-

rithm for estimating the optimal policy and prove its conver-

gence in Section 4. Section 5 presents numerical examples.

2. G-MPR MODEL AND PROBLEM
FORMULATION

Let i = 1, 2, . . . ,K (K < ∞) index the K sensors in a

slotted ALOHA system with multipacket reception capabil-

ity. Let the random variable γi denote the channel state
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of sensor i. We assume that every sensor knows its chan-

nel state at the beginning of each transmission slot. Define

�γ(k) = (γ1, . . . , γk) for any k ≤ K. We assume that the

channel distributions of all sensors are i.i.d. and denote it by

F (.). This assumption is appropriate for large scale sensor

networks where the sensors are approximately equi-distant

from the base station. It is also an assumption in [1]. Let

p(.) : R+ → [0, 1] be a function mapping channel states

to transmit probabilities. Our objective in this paper is to

find the optimal p(.) that can be deployed by all sensors to

maximize the maximum system stable throughput.

We follow the G-MPR model proposed in [1]. The set

of possible outcomes when only k (k ≤ K) sensors with

channel states �γ(k) transmit is the set of binary k-tuples:

Θk =
(
θ
(k)
1 , . . . , θ

(k)
k

)

θ
(k)
i = {0, 1}; i = 1, . . . , k. θi = 1 indicates that the packet

from sensor i is correctly received and θi = 0 indicates oth-

erwise. We are concerned with the expected total number

of packets that are received correctly. This information is

summarized in the following set of K functions:

Ψ(k)(�γ(k))
�
=

k∑
i=1

E
[
θ
(k)
i |k sensors transmit,�γ(k)

]
(1)

Using the reception model ( 1) the maximum system stable

throughput is given in [1]:

LK(p(.)) =
K∑

k=1

(
K
k

)
(1 − p)K−k

∫ ∞
0

. . .
∫ ∞
0

p(γ1)

. . . p(γk)Ψ(k)(�γ(k))dF (γ1) . . . dF (γk), (2)

where p =
∫ ∞
0

p(γ)dF (γ) is the average transmit proba-

bility of each sensor. The above maximum stable through-

put is the expected throughput when all sensors have data

to transmit [1]. Our optimization is therefore equivalent to

maximize the expected throughput when the system is fully

loaded and can be formulated as :

max
p(.)

L(p(.))

s.t 0 ≤ p(.) ≤ 1
(3)

This optimization problem is infinite dimensional and can-

not be solved analytically. Our approach in this paper is as

follows: 1) We first prove that under certain conditions the

optimal transmit probability function is either 1 or 0. 2) We

then use the stochastic gradient ascent method to estimate

the optimal transmit probability function.

3. OPTIMAL TRANSMISSION POLICY

Theorem 1. Consider a slotted ALOHA system of K sen-
sors as described in Section 2. Use the reception model

( 1). Assume that there exists uniquely an optimal trans-
mission probability function p∗(.) : R+ → [0, 1], which
maximizes the expected system throughput ( 2) in the sense
that if one or more sensors deviate from p∗(.) the expected
system throughput decreases. Then p∗(.) satisfies:

p∗(.) ∈ {0, 1} (4)

Proof. Let p∗(.) be the optimal transmit probability func-

tion. Let sensors 1, . . . , K − 1 use p∗(.) and denote the

throughput obtained by these K − 1 sensors when sensor K

does not transmit by L(K−1)(p∗(.)). We aim to find a trans-

mit probability function p(.) for sensor K to maximize the

system throughput. p∗(.) must be the unique solution.

If sensor K has channel state realization γK and trans-

mits with probability p(γK), it causes a drift D(γK) in the

throughput:

D(γK) = p(γK)
K−1∑
k=0

(
K − 1

k

)
(1 − p∗)K−1−k

∫ ∞

0

. . .

∫ ∞

0

p∗(γ1) . . . p∗(γk)
(
Ψ(k+1)(�γ(k), γK) − Ψ(k)( �γ(k))

)
dF (γ1) . . . dF (γk)

= p(γK)h(γK)

Maximizing the drift point-wise, i.e. for all γK , will

automatically maximize the throughput. Hence, selecting

p(γK) =
{

1 if h(γK) > 0
0 otherwise

(5)

for all γK ∈ [0,∞) will optimize the system throughput.

p∗(.) is the unique solution and hence must be ( 5), which

satisfies ( 4).

Remarks: The assumption that the global optimum ex-

ists uniquely is not satisfied under the collision model but it

can be satisfied under the G-MPR model, for example un-

der the Signal to Interference Noise Ratio (SINR) threshold

receiver model for CDMA systems with matched filters [8].

4. ESTIMATE THE OPTIMAL POLICY

In this section we divide the channel state into a finite num-

ber of regions and estimate an optimal transmit probability

for each region. Selecting the uplink Signal to Noise Ra-

tios to represent channel states we approximate the transmit

probability function as below:

p�θ(γ) =
M∑
i=1

sin2 θiIαi≤γ<αi+1 ,

where I is the indicator function; M and αi, i = 1, 2 . . . M
(αi < αj ∀i < j) define the channel state (SNR) regions

and can be chosen arbitrarily. Define �θ
�
= (θ1, . . . , θM ).
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The system stable throughput ( 2) can be rewritten as:

L(�θ) =
K∑

k=1

(
K
k

)
(1 − p�θ)

K−kEF k

[
p�θ(γ1) . . .

p�θ(γk)Ψ(k)(�γ(k))
]
, (6)

where p�θ =
M∑
i=1

sin2 θi(F (αi+1) − F (αi)) (7)

Reformulate the optimization problem ( 3) as:

max
�θ

L(�θ) (8)

Let Xk = p(γ1) . . . p(γk)Ψ(k)(�γ). The gradient of ( 6) with

respect to θi can be computed as:

∇θi
L(�θ)=

K∑
k=1

(
K
k

)[
(k − K)(1 − p�θ)

K−k−1(F (αi+1)−

F (αi) ) sin(2θi)EF k [Xk] + (1 − p)K−k∇θi
EF k [Xk]

]
(9)

Estimating ∇θi
L(�θ) requires estimations of E [Xk] and its

gradient. To reduce variances we estimate these values con-

ditioned on the event that all k sensors transmit, which we

denote as event Yk. The aposteriori channel state distribu-

tion of a sensor given that it transmits is computed in [6],

[1]:

G�θ(γ) =

∫ γ

0
p�θ(γ)dF (γ)∫ ∞

0
p�θ(γ)dF (γ)

=

∫ γ

0
p�θ(γ)dF (γ)

p
(10)

The corresponding density function is g�θ(γ) = p�θ
(γ)f(γ)

p .

E [Xk] can be estimated using (11) and its gradient is com-

puted using the score function method [9] in ( 12) :

E [Xk] = E [E [Xk|Yk]] = Pr(Y )EF k|Yk

[
Ψ(k)(�γ(k))

]
= pkEGk

�θ

[
Ψ(k)(�γ(k))

]
(11)

∇�θE [Xk] = pk∇�θEGk
�θ

[Ψ(k)(�γ(k))]

= pkEGk
�θ

[
Ψ(k)(�γ(k))

(
∇�θ

(
g�θ(γ1) . . . g�θ(γk)

)
g�θ(γ1) . . . g�θ(γk)

)]

= pkEGk
�θ

[
Ψ(k)(�γ(k))

(∇�θg�θ(γ1)
g�θ(γk)

+. . .+
∇�θg�θ(γk)
g�θ(γk)

)]
(12)

We now define a stationary point, which is also a local

maximizer of the system throughput as

�θ∗ = {�θ : ∇�θL(�θ) = 0,∇2
�θ
L(�θ) < 0} (13)

Algorithm 1. Optimal Transmit Policy Estimation

• Initialization: l = 1 ; �θ(1) = θ1, . . . , θM

• Sampling, evaluation of gradient and update loop

while |∇�θL
(l)(�θ)| > 0 do

for k = 1, . . . , K do
Use Monte-Carlo simulations to estimate:

EG�θ(l)

[
Ψ(k)

l (�γ(k))
]

EG�θ(l)

[
Ψ(k)

l (�γ(k))
(∇�θ

g�θ
(γ1)

g�θ
(γ1)

+. . . +∇�θ
g�θ

(γk)

g�θ
(γk)

)]
end for
Compute ∇�θL

(l)(�θ)|�θ=�θ(l) using (9),(7),(11),(12)

�θ(l+1) = �θ(l) + εl ∗ ∇�θL
(l)(�θ) (14)

l = l + 1

end while

• Conditions:
l=∞∑
l=1

εl = ∞;
l=∞∑
l=1

ε2
l < ∞ (C1)

Theorem 2. The estimates �θ(l) generated by Algorithm 1
converge w.p.1 to a local maximizer �θ∗, defined in ( 13), of
the system stable throughput ( 6).

Proof. For a fixed initial �θ, since the sequence ∇�θL
(l)(�θ) :

l = 1, 2 . . . are i.i.d, the above equation ( 14) is an instance

of the well known Robbins Munro algorithm. The conver-

gence of this algorithm (and much more general algorithms)

is proved in [5] under the condition (C1) and uniform inte-

grability of ∇�θL
(l)(�θ). A sufficient condition for uniform

integrability is that the channel distribution has finite vari-

ance.

5. NUMERICAL STUDIES

We study slotted ALOHA CDMA networks with matched

filter receivers and random signature sequences in Rayleigh

Fading channels. We assume the uplink SNRs represent the

channel states. We use a heuristic SINR threshold model

as in [10]: the packet from sensor i is successfully received

only if

Pj

σ2 + 1
N

∑
i�=j

Pi

=
γj

1 + 1
N

∑
i�=j

γi

> β,

where Pj is the received power of sensor i; Pj = γjσ
2; σ2

is the noise variance.

Figure 1 compares the system throughputs of 3 schemes:

exploiting decentralized CSI via algorithm 1, using the al-

gorithm in [3] which does not exploit CSI, always letting

sensors transmit. The throughput is improved with the size

of the network only in scheme 1. In addition, the success-

ful rate remains high (0.76) in scheme 1. This means that
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fewer transmissions are required to achieve the best system

throughput. This is important when battery life is an issue

which is often the case in sensor networks.

Figure 2 shows the convergence property of algorithm 1.

For a network of 20 sensors, spreading gain S = 32, only 100

samples are drawn at each iteration, algorithm 1 converges

to a good neighborhood of the optimal point after about 10

iterations. Due to the quantization of the channel state, the

transmit probabilities are not purely 0 and 1 as suggested by

theorem 2, but figure 2 illustrates theorem 2 very closely.

6. CONCLUSION

In this paper we discover that under certain conditions, the

optimal transmit probability function has a degenerate struc-

ture. We present a convergent algorithm to design optimal

transmit probabilities for slotted ALOHA sensor networks

under the G-MPR model. Throughout the paper we assume

decentralized channel state knowledge and long term sym-

metry between sensors. The latter can be relaxed when we

use a game theoretic approach to solve the problem [7].
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