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ABSTRACT

We implement a two-stage DPCM coding scheme for wire-
less sensor networks. The scheme consists of temporal and
spatial stages that compress data by making predictions based
on samples from the past and helping sensors. It contin-
uously monitors the additional gain provided by samples
from other sensors, and therefore can be combined with
data-centric routing algorithms for joint compression/routing
optimization. Backward ε-NLMS adaptation is used to bet-
ter track changing environments and avoid coefficient trans-
missions. Several simulations are conducted to demonstrate
the effectiveness of this coding scheme.

1. INTRODUCTION

Wireless sensor networks often operate under tight energy
budgets. Communication power accounts for a substantial
portion of sensor’s energy consumption, and so the data rate
should be aggressively reduced to achieve conservation [1].
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Fig. 1. A simple joint compression/routing problem.

Sensor networks differ from traditional communication
networks in that data generated at different sensors, espe-
cially proximate ones, have high correlation since they are
observations of closely related physical phenomena. A lot
of research has been focusing on judiciously routing pack-
ets through sensors with highly correlated data such that the
overall transmission is minimized [2][3]. As a simple illus-
tration, consider Fig. 1 where three sensors transmit their
observations to the fusion center. Sensor s1 may route its
packets through s2 or s3. The relay can read s1’s packets to
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further compress its own data. To determine the better rout-
ing strategy, we need to know how much additional rate
reduction, which may vary with time, s1’s data can pro-
duce for s2 and s3. Most data-centric routing algorithms
assumes this rate-reduction information. Here, we discuss
a two-stage DPCM scheme that processes first local side
information, which is available without cost, then samples
from other sensors. Additional coding gain provided by dis-
tant helping samples can be continuously monitored such
that spatial side information is used only when the gain out-
weighs the cost. (This information is generally not available
in traditional coding schemes.) Our method can be com-
bined with data-centric routing strategies for use in joint
compression/routing optimization.

We use closed loop backward adaptation, which does
not require coefficient transmission, and tracks the chang-
ing statistics. In contrast, a forward adaptive scheme com-
putes prediction coefficients from a block of samples in ad-
vance. It offers slightly higher gain for a slowly evolving
field, but requires data buffering and additional bandwidth
for coefficient transmission. Along with the adaptive pre-
diction, adaptive quantization is use to make the most of the
coding gain.

DPCM has been widely used in speech and video cod-
ings [4]. Two-stage DPCM schemes in speech coding base
their predictions on previous samples and samples that are
about one pitch period away. In video coding, the two-
stage scheme is applied when both adjacent and inter-frame
samples are used. However, in these methods, the distant
side information is as readily available as adjacent samples.
Hence, their coder design has more flexibilities.

The paper is organized as follows. The two-stage DPCM
scheme is presented in section 2. Simulation results are dis-
cussed in section 3. Section 4 concludes the paper.

2. TWO-STAGE ADAPTIVE DPCM SCHEME

2.1. Two-stage suboptimal approach

The two-stage suboptimal approach is described in Fig. 2.
Sequences xj(n), j = 0, 1, · · · ,M are the measurements
of sensor j at time n. Assuming that all the sequences have
had their mean removed, a temporal DPCM stage is first
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Fig. 2. The block diagram of a two-stage DPCM encoder

run at all sensors, then further compression is achieved us-
ing other sensors’ temporal DPCM output as the side infor-
mation. Define τj , j = 1, · · · ,M as the delay at dj(n)
that yields the highest correlation with d0(n). It can be es-
timated using cross-correlation methods. Denote by a∗ the
complex conjugate of a, and AH the complex conjugate and
transpose of A. We have the following:

d0(n) = x0(n) −
N∑

i=1

a∗
i x̃0(n − i)

= x0(n) − wH
t yt(n)

e0(n) = d0(n) −
M∑

j=1

K∑
k=−K

b∗j,kd̃j(n + τj + k)

= d0(n) − wH
s ys(n)

where

wt =

⎡
⎢⎣

a1

...
aN

⎤
⎥⎦ , yt(n) =

⎡
⎢⎣

x̃0(n − 1)
...

x̃0(n − N)

⎤
⎥⎦ ,

ws =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1,K

...
b1,−K

...
bM,K

...
bM,−K

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ys(n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d̃1(n + τ1 + K)
...

d̃1(n + τ1 − K)
...

d̃M (n + τM + K)
...

d̃M (n + τM − K)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In a closed loop implementation, x̃0(n) and d̃j(n) are sam-
ples that are available at the decoder. Here, we assume they
are the same as x0(n) and dj(n) with sufficient quantization
bits. MMSE criteria on separate stages yield:

wopt
t = R−1

tt rt, wopt
s = R−1

ss rs,

and the minimum mean square error

Js
min = σ2

x − rH
t R−1

tt rt − rH
s R−1

ss rs.

in which

Rtt = EytyH
t , Rss = EysyH

s , rt = Eytx
∗
0, rs = Eysd

∗
0

Define the overall and spatial coding gains

G = Ex2
0(n)/Ee2

0(n) = σ2
x/Js

min

Gs = Ed2
0(n)/Ee2

0(n) = (σ2
x − rH

t R−1
tt rt)/Js

min

In contrast, a one-stage scheme using the same set of side
information would yield:

Jmin = σ2
x − rH

y R−1
yy ry

in which

Rts = EytyH
s ,Ryy =

[
Rtt Rts

RH
ts Rss

]
, ry =

[
rt

rs + RH
tsw

opt
t

]

In general, Js
min > Jmin, but a two-stage implementation

offers several other advantages over a one-stage approach.
It improves stability. For highly correlated x0(n) and xj(n),
matrix Ryy becomes near-singular. Separately designing
temporal and spatial stages can help ensure that the tempo-
ral stage is minimum phase, thus stable. The spatial coding
gain Gs sheds light on how much additional gain is pro-
vided by distant samples. At the spatial stage, dj(n) instead
of xj(n) is used, so less decoding effort is required. In ad-
dition to compression, the temporal stage serves as a pre-
whitening process, and the resulting Rss has better eigen-
value structures. This enhances the adaptive performances
of the second stage [5].

2.2. ε-NLMS adaptation

The detailed block diagram of the closed loop DPCM en-
coder is given in Fig. 3. Switch k1 controls whether the
spatial stage is used. The decoder has a similar structure,
and hence is not shown here.
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Fig. 3. The detailed block diagram of the encoder

The weight iteration uses ε-NLMS with power update.
The algorithm starts with wt(−1), pt(−1), ws(−1), and
ps(−1), iterate for n = 0, 1, 2, · · ·

x̂0(n) = wH
t (n − 1)yt(n), d0(n) = x0(n) − x̂0(n)
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d̂0(n) = wH
s (n − 1)ys(n), u0(n) = d0(n) − d̂0(n)

e0(n) = Q [u0(n)]

d̃0(n) = d̂0(n) + e0(n), x̃0(n) = x̂0(n) + d̃0(n)

ps(n) = βsps(n − 1) + (1 − βs)|d̃0(n)|2

ws(n) = ws(n − 1) +
µs

εs + ps(n)
e∗0(n)ys(n)

pt(n) = βtpt(n − 1) + (1 − βt)|x̃0(n)|2

wt(n) = wt(n − 1) +
µt

εt + pt(n)
d̃∗
0(n)yt(n)

2.3. Helper evaluator

The helper evaluator, controlled by k2 has two functions:
delay estimation and helper selection. Delay estimator de-
termines the τj , j = 1, · · · ,M resulting in the highest
cross-correlation

φ0j(τj) =

∑n+L−1−τj

i=n d0(i)d∗j (i + τj)√∑n+L−1
i=n |d0(n)|2 ∑n+L−1

i=n |dj(n)|2

Directly computing φ0j(τj) requires O(L) operations (L is
the block size). The cost is reduced by using coarsely quan-
tized samples [6]. The helper selector comes into play when
a decision needs to be made on using which set of sensors’
data as side information. The autocorrelation method [7] is
applied to applicable sets of sensors and the one with the
best gain/cost tradeoff is selected assuming the cost of dis-
tant side information is known. Note that the correlation
matrix has Toeplitz-like structures, and efficient algorithms
exist for solving such systems [8]. The overall cost of the
evaluator can be kept within O(L).

As the prediction error u0(n) varies, an adaptive quan-
tizer is essential to maximize the coding gain and limit quan-
tization error. Readers are directed to [4] for more details.

3. SIMULATIONS

3.1. Autoregressive source

In the first simulation, we consider an autoregressive source
observed by two sensors.

s(n) = s(n − 1) − .5s(n − 2) + z(n)

xj(n) = s(n) + uj(n), j = 1, 2

in which z(n) and uj(n) are white Gaussian noise. Using
one sensor’s data as helping information, we plot the cod-
ing gains G and Gs against the variance ratio σ2

z/σ2
u for dif-

ferent schemes. ‘osf’ indicates one-stage forward DPCM,
‘tsd’ means two-stage ε-NLMS with different step sizes on
temporal and spatial stages, and ‘tss’ denotes two-stage ε-
NLMS with the same step sizes. (The spatial coding gain

of one-stage forward method is evaluated by comparing its
result to the output of a single forward temporal stage.) It
is observed that the spatial coding increases with the obser-
vation SNR, while temporal gain quickly saturates as it is
circumscribed by the source statistics. In addition, Our ex-
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Fig. 4. Coding gain for an autoregressive source

perience reveals that appropriately choosing the relative step
sizes of spatial and temporal stages κ = µs/µt can yield up
to 2 dB gain improvement over simply setting κ = 1. This
is explained as follows. Since the magnitude of e0(n) is
smaller than that of d0(n), using the same step sizes dis-
courages the update of spatial weights ws. Choosing κ ac-
cording to the magnitudes of e0 and d0 results in an adapta-
tion that resembles the one-stage DPCM. It is cautioned,
however, that setting κ too big undermines the temporal
stage and tends to exaggerate the spatial coding gain.

3.2. Acoustic source

In the second simulation, we consider the acoustic data gen-
erated by a moving tank in a near field sensor array setup
depicted in Fig. 5 [9]. 2000 samples are collected during
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Fig. 5. Near field sensor array configuration

the period. Observations from sensor s0 are used as helping
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Table 1. Coding gains (dB) of different schemes.
sensor Gtsd Gtsd

s Gtss Gtss
s Gosf Gosf

s

s1 22.27 9.08 21.60 8.41 21.13 7.95
s2 21.93 8.64 21.25 7.97 18.70 5.76
s3 21.55 8.35 20.69 7.49 19.13 6.32

Table 2. Coding gains (dB) by different cities.
city Gtsd Gtsd

s

Macao 19.27 10.08
Datong 9.81 .09

information to compress the data at sensor s1, s2, and s3.
Since relative delay τj varies when the tank passes by the
array, ε-NLMS adaptation performs better than the forward
scheme that estimates the prediction coefficients for blocks
of samples. This is displayed in Table 1, where we compare
the coding gains (in dB) of ε-NLMS adaptation and the for-
ward scheme with block size 200. Notice ‘tsd’ has slightly
higher gain than ‘tss’. We also observe that when the tank is
closest to the sensor array, the forward method fares worst
as τj varies the most. On the other hand, the ε-NLMS adap-
tation yields consistent results once it converges.

3.3. Weather data

So far, we have considered point sources. In the last sim-
ulation, we look at some correlated weather data obtained
from NCDC [10]. We consider the daily mean temperature
measured at three stations located at Hongkong, Macao, and
Datong in 2003. We compress the data at Hongkong us-
ing those from Macao and Datong as side information. The
coding gains (in dB) are given in Table 2. It shows that
the spatial coding gain by Macao is way higher than that
by Datong. This is expected because Hongkong and Macao
are two cities near to one another, while Datong is at north-
ern China, thousands miles away. In Fig. 6, we plot the
input x(n) (with mean removed) and outputs of temporal
and spatial stages at the encoder when samples from Macao
are used as side information. The relative large error at the
beginning is due to the initial weight convergence.

4. CONCLUSION

We discussed a two-stage DPCM scheme. Its ability to track
the additional coding gain provided by distant side informa-
tion makes it useful for joint compression/routing optimiza-
tion in sensor networks. The ε-NLMS adaptation reason-
ably adjusts to the changes on sample correlation. Simula-
tions demonstrate that the algorithm provides results close
to optima when the step sizes are appropriately set.
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Fig. 6. Input and outputs of the encoder at Hongkong
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