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ABSTRACT

The performance of collaborative beamforming is studied using
the theory of random arrays in the framework of wireless sensor
networks. With the application to ad hoc networks in mind, two
scenarios, one denoted closed-loop and the other open-loop, are
considered. Associated with these scenarios, the effects of phase
jitter and location estimation errors on the average beampattern are
analyzed.

1. INTRODUCTION

Recent advances in the construction of low cost, low power,
and mass produced micro sensors and Micro-Electro-Mechanical
(MEM) systems have ushered in a new era in system design us-
ing distributed sensor networks [1, 2]. In ad hoc sensor networks,
collaborative beamforming [3, 4] has a significant potential to im-
prove bandwidth-efficient communications. If the sensor nodes
in the cluster share the information a priori and synchronously
transmit their data collaboratively, it may be possible to beamform
when transmitting (or receiving) data in a distributed manner and
only in the specified target direction. This enables Space-Division
Multiple Access (SDMA), a technology that has the potential to
increase significantly the capacity of multiple access channels.

The obvious question is whether one can form a nice beam-
pattern with a narrow mainbeam. As the sensor nodes in ad hoc
networks are by nature located randomly, it is natural to treat the
beampattern with probabilistic arguments. In the antenna design
literature, Lo [5] has developed a comprehensive theory of linear
random arrays in the late 1960’s, and it has been shown that ran-
domly generated linear arrays with large numbers of nodes can in
fact form a good beampattern with high probability. (The theory
of random arrays has been discussed and developed almost exclu-
sively in the antenna design community, e.g., in [5, 6].) In previous
work [3], we have shown that with N sensor nodes, a sharp main-
beam with sidelobe as low as 1/N can be formed with high prob-
ability, under the assumption that all nodes estimate their initial
phases perfectly and transmit with perfect synchronization.

The major difference between classical beamforming by an-
tenna arrays and distributed beamforming is that whereas the ge-
ometry of the former is usually known a priori, the exact location
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of the sensor nodes in an ad hoc network is not, and it should be
acquired dynamically. Even if their relative location is estimated
by some adaptive algorithm, considering the low SNR operation
of the sensor nodes, it is certain that the acquired geometric infor-
mation has some inaccuracy. Also, since all nodes are operated
with physically different local oscillators, each node may suffer
from statistically independent phase offsets. In order to model and
investigate the effect of these impairments, we consider the fol-
lowing two scenarios: closed loop and open loop.

1) Closed loop: In this scenario, each node independently syn-
chronizes itself to the beacon sent from the destination node (such
as a base station) and adjusts its initial phase to it. Thus, the beam
will be formed in the direction of arrival of the beacon. This kind
of system is often referred to as a self-phasing array in the litera-
ture, and may be effective for systems operating in Time-Division
Duplex (TDD) mode. The residual phase jitter due to synchroniza-
tion and phase offset estimation among sensor nodes is then often
the dominant impairment.

2) Open loop: Here, we assume that all nodes within the clus-
ter acquire their relative locations from the beacon of a nearby ref-
erence point or cluster head. The beam will then be steered toward
an arbitrary direction. Thus, the destination need not transmit a
beacon, but each node requires precise knowledge of its relative
position from a predetermined reference point within the cluster.
This case may occur in ad hoc sensor networks where sensor nodes
do not have sufficient knowledge of the destination direction a pri-
ori. The location estimation ambiguity among sensors may also
affect the beampattern in this case.

In this paper, we extend our study of [3] to the case where the
nodes do not have perfect phase information. Specifically, we an-
alyze the impact of phase jitter or location estimation errors on the
resultant beampattern in conjunction with the above two scenarios.

Throughout the paper, the nodes and channel are assumed to
be static over the communication period, and for simplicity the
information rate is sufficiently low that Inter-Symbol Interference
(ISI), due to residual timing offset, is negligible. It will also be
assumed that all nodes share the same transmitting information a
priori, as the main focus of the paper is on the beampattern, rather
than the front-end communication performance.

2. SYSTEM MODEL AND AVERAGE BEAMPATTERN

In this section, we review the system model and properties of the
average beampattern discussed in [3]. The geometrical configu-
ration of the distributed nodes and destination (or target) is illus-
trated in Fig. 1 where, without loss of generality, all the collabora-
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Fig. 1. Definitions of notation.

tive sensor nodes are assumed to be located on the x-y plane. The
kth node location is thus denoted in polar coordinates by (rk, ψk).
The location of the destination is given in spherical coordinates by
(A, φ0, θ0). Following the standard notation in antenna theory [7],
the angle θ ∈ [0, π] denotes the elevation direction, whereas the
angle φ ∈ [−π, π] represents the azimuth direction. In order to
simplify the analysis, the following assumptions are made:

1. The location of each node is chosen randomly, following a
uniform distribution within a disk of radius R.

2. Each node is equipped with a single ideal isotropic antenna.

3. All sensor nodes transmit identical energies, and the path
losses of all nodes are also identical.

4. There is no multipath fading or shadowing.

5. Mutual coupling effects [7] among the antennas of different
sensor nodes are negligible.

Of particular interest in practice is the case where θ0 = π
2
,

i.e., the destination node is in the same plane as the collaborative
sensor nodes. Thus, for simplicity, we will assume that θ0 = π

2
for the rest of the paper. Let dk(φ) denote the Euclidean distance
between the kth node and the reference location (A, φ, θ)|θ=π/2,
which is given by

dk(φ) =
q

A2 + r2
k − 2rkA cos(φ − ψk). (1)

In the closed-loop scenario, we assume that each node ac-
quires accurate knowledge of the distance (relative to the wave-
length of the radio frequency (RF) carrier λ) from the destination.
By setting the initial phase of the node k ∈ {1, 2, . . . , N} to

Ψk = −2π

λ
dk(φ0), (2)

the corresponding array factor, given the realization of node
locations r = [r1, r2, . . . , rN ] ∈ [0, R]N and ψ =
[ψ1, ψ2, . . . , ψN ] ∈ [−π, π]N , is given by

F (φ|r, ψ) =
1

N

NX
k=1

ejΨkej 2π
λ

dk(φ), (3)

where N is the number of sensor nodes.
In this paper, we are interested in the radiation pattern in the

far-field region, and we assume that the far-field condition A � rk

holds. The far-field distance dk(φ) in (1) can then be approximated
as

dk(φ) ≈ A − rk cos(φ − ψk). (4)

The far-field beam pattern is thus approximated by

F̃ (φ|r, ψ) � 1

N

NX
k=1

ej 2π
λ

rk[cos(φ0−ψk)−cos(φ−ψk)]. (5)

Alternatively, in the open-loop scenario, instead of applying
Ψk as in (2), each node chooses its initial phase as

Ψ†
k =

2π

λ
rk cos(φ0 − ψk). (6)

Accurate knowledge of the node positions relative to some com-
mon reference (such as the origin in this example) may thus be
required. The array factor in this case is given by

F̃ †(φ|r, ψ) � ej 2πA
λ

N

NX
k=1

ej 2π
λ

rk[cos(φ0−ψk)−cos(φ−ψk)]. (7)

Note that the only difference between F̃ (φ|r, ψ) in (5) and
F̃ †(φ|r, ψ) in (7) is the existence of the initial phase offset of
2πA

λ
. The far-field beampattern is thus identical for both systems,

and the received signal exhibits no difference as long as the base
station compensates for this phase rotation.

From (5), we have

F̃ (φ|r, ψ) =
1

N

NX
k=1

e
j4π R

λ
sin

“
φ0−φ

2

”
r̃k sin ψ̃k , (8)

where r̃k � rk/R and ψ̃k � ψk − φ0+φ
2

. By assumption, the
node locations (rk, ψk) follow a uniform distribution over the disk
of radius R. The compound random variable

zk � r̃k sin ψ̃k, (9)

has the following probability density function (pdf):

fzk (z) =
2

π

p
1 − z2, −1 ≤ z ≤ 1. (10)

Without loss of generality, we assume that φ0 = 0. The array
factor of (8) can then be rewritten as

F̃ (φ|z) =
1

N

NX
k=1

e−j4πR̃ sin(φ
2 )zk , (11)

where R̃ � R
λ

is the radius of the disk normalized by the wave-
length. Finally, the far-field beampattern, which may be defined as

P (φ|z) �
˛̨̨
F̃ (φ|z)

˛̨̨2
, is thus expressed as

P (φ|z) =
1

N
+

1

N2

NX
k=1

e−jα(φ)zk

NX
l=1
l�=k

ejα(φ)zl , (12)

where α(φ) � 4πR̃ sin φ
2
.

The average beampattern of the random array resulting from
the distributed sensor network model is defined as

Pav(φ) � Ez {P (φ|z)} . (13)

From (12) and (10), it can be readily shown that

Pav(φ) =
1

N
+

„
1 − 1

N

« ˛̨̨
˛2 · J1 (α(φ))

α(φ)

˛̨̨
˛
2

, (14)
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where Jn(x) is the nth order Bessel function of the first kind.
In (14), the first term represents the average power level of the
sidelobe, which does not depend on the node location, whereas
the second term is the contribution of the mainlobe factor. Since,
conditioned on φ, the array factor of the form (11) is an average
of bounded independent and identically distributed (i.i.d.) com-
plex random variables, by the law of large numbers the beampat-
tern (12) converges to the ensemble average (14) in probability as
N → ∞.

3. PERFORMANCE OF DISTRIBUTED BEAMFORMING
WITH IMPERFECT PHASE

In this section, we analyze the effect of the phase ambiguities in
the closed-loop scenario as well as location estimation errors in the
open-loop scenario. For each of the two scenarios, we derive the
average beampattern and calculate the amount of degradation.

3.1. Closed-loop case

In the closed-loop case, the effects of imperfect phase may be eas-
ily derived, following the approach developed by Steinberg [8].
The initial phase of node k in (2) will now be given by

Ψ̂k = −2π

λ
dk(φ0) + ϕk, (15)

where ϕk corresponds to the phase offset due to the phase ambigu-
ity caused by carrier phase jitter or offset between the transmitter
and receiver nodes. In the following, the phase offset ϕk’s are as-
sumed to be i.i.d. random variables. Then, from (3), (4), (5), and
(11), the far-field array factor will be given by

F̃ (φ|z, ϕ) =
1

N

NX
k=1

e−jzk4πR̃ sin φ
2 ejϕk . (16)

The average beampattern of (13) will be replaced by

Pav(φ) � Ez,ϕ {P (φ|z, ϕ)} . (17)

Similar to (14), direct calculation of (17) results in

Pav(φ) =
1

N
+

„
1 − 1

N

« ˛̨̨
˛2J1 (α(φ))

α(φ)

˛̨̨
˛
2

|Aϕ|2 , (18)

where
Aϕ � Eϕk

n
ejϕk

o
. (19)

Thus, as N → ∞, the average beampattern will simply become a
version of the original scaled by a factor of |Aϕ|2.

Let us now assume that the phase offset follows a Tikhonov
distribution, a typical phase jitter model for Phase-Locked Loop
(PLL) circuits, given by

fϕ(x) =
1

2πI0

`
1/σ2

ϕ

´ exp
`
cos(x)/σ2

ϕ

´
, |x| ≤ π (20)

where σ2
ϕ is the variance of the phase noise and In is the nth or-

der modified Bessel function of the first kind. The corresponding
attenuation factor is given by

Aϕ =
I1(1/σ2

ϕ)

I0(1/σ2
ϕ)

. (21)

-5 0 5 10 15 20
Loop SNR [dB]

-20

-15

-10

-5

0

D
eg

ra
da

tio
n 

[d
B

]

Fig. 2. Mainbeam degradation due to the phase noise in the closed-
loop scenario.

The variance of the phase noise σ2
ϕ is related to the loop SNR of

the PLL by
ρϕ = 1/σ2

ϕ. (22)

Fig. 2 shows the degradation factor |Aϕ|2 with respect to the loop
SNR. As observed from the figure, a loop SNR of 3 dB may be
necessary for each node in order to reduce the overall beampattern
degradation to less than 3 dB.

3.2. Open-loop case

In the open-loop case, our model of the initial phase is given in (6),
and if there are estimation errors in the location parameters rk and
ψk, the initial phase will be replaced by

Ψ̂†
k =

2π

λ
(rk + δrk) cos(φ0 − (ψk + δψk)), (23)

where δrk and δψk are the corresponding error random variables,
each set assumed to be i.i.d. and also independent of rk and ψk for
simplicity. With the far-field approximation, we have [4]

2π

λ
dk (φ) + Ψ̂†

k ≈ 2π

λ
A − 4π

λ
rk sin ψ̃k sin

„
φ − φ0 − δψk

2

«

+
2π

λ
δrk cos

„
ψ̃k +

φ − φ0 + δψk

2

«
,

where ψ̃k � ψk − φ+φ0−δψk
2

.
The resulting beampattern is expressed as

P (φ|z, v, δψ) =
1

N
+

1

N2

NX
k=1

NX
l=1
l�=k

ej 2π
λ

(vk−vl)

× e
−j4πR̃

n
zk sin

“
φ−φ0−δψk

2

”
−zl sin

“
φ−φ0−δψl

2

”o
,

where

zk � rk

R
sin ψ̃k = r̃k sin

„
ψk +

δψk

2
− φ + φ0

2

«

vk � δrk cos

„
ψ̃k +

φ + δψk

2

«
= δrk cos (ψk + δψk − φ0) .
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Conditioned on φ, φ0 and δφk, the angle ψ̃k can be seen as a
uniformly distributed random variable, and thus the pdf of zk is
given by (10). Considering the fact that rk and δrk are assumed to
be statistically independent, we further assume for analytical pur-
poses that zk and vk are statistically independent. Then, again,
the beampattern does not depend on the particular choice of φ0.
Furthermore, on modeling δrk as being uniformly distributed over
[−rmax, rmax] and assuming the phase term of vk to be uniformly
distributed over [0, 2π], the probability density function of vk will
be given, for |v| ≤ rmax, by

fvk (v) =
1

πrmax

2
4ln

0
@1 +

s
1 −

„
v

rmax

«2

1
A− ln

|v|
rmax

3
5 .

Consequently, the average beampattern can be written as

Pav(φ) =
1

N
+

„
1 − 1

N

«
|Aψ(φ)|2 |Ar|2 , (24)

where

Ar � Evk

n
ej 2π

λ
vk

o
= 1F2

„
1

2
; 1,

3

2
; −
“
π

rmax

λ

”2
«

(25)

Aψ(φ) � Ezk,δψk

j
e

j4πR̃zk sin
“

φ0+δψk−φ

2

”ff

= Eδψk

8<
:

J1

“
4πR̃ sin φ−δψk

2

”
2πR̃ sin φ−δψk

2

9=
; , (26)

and without loss of generality φ0 = 0 was assumed. In (25),
1F2

`
1
2

; 1, 3
2

; −x2
´

denotes a generalized hypergeometric func-
tion which has an oscillatory tail but converges to zero as x in-
creases.

Also, assuming that the δψk are uniformly distributed over
[−ψmax, ψmax] and using the approximation sin (φ + δψk) ≈ φ +
δψk which is valid for the beampattern around the mainbeam, we
obtain

Aψ(φ) ≈ 1

2

„
1 − φ

ψmax

«
1F2

„
1

2
;

3

2
, 2 ; −(πR̃(φ + ψmax))

2

«

+
1

2

„
1 +

φ

ψmax

«
1F2

„
1

2
;

3

2
, 2 ; −(πR̃(φ − ψmax))

2

«
.

(27)

Since the hypergeometric function 1F2

`
1
2

; 3
2
, 2 ; −x2

´
has a

maximum peak value of 1 at x = 0, the above expression indi-
cates that regardless of the value of R̃, there may be two symmetric
peaks around the mainbeam at φ = ±ψmax resulting in a pointing
error. Therefore, the mainbeam may spread over by a factor of
ψmax. At the center of the mainbeam, we have

Aψ(0) = 1F2

 
1

2
;

3

2
, 2 ; −

„
π

Rψmax

λ

«2
!

. (28)

Fig. 3 shows the degradation factor |Ar|2 and |Aψ(0)|2 for
a given rmax

λ
and Rψmax

λ
. As observed from the figure and discus-

sion above, the angle estimation error has two effects, i.e., point-
ing error and mainbeam degradation. In particular, if we wish to
suppress the degradation below 3 dB, from the figure, we should
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Fig. 3. Mainbeam degradation due to location estimation errors in
open-loop scenario.

choose Rψmax/λ ≤ 1/2. This means that the maximum angle
estimation error should satisfy

ψmax ≤ λ

2R
=

1

2R̃
, (29)

and as R̃ becomes large, the requirement of minimum angle ambi-
guity from (29) becomes severe.

4. CONCLUSION

We have analyzed the stochastic performance of random arrays for
distributed collaborative beamforming, in the framework of wire-
less ad hoc sensor networks. We have considered two scenarios
of distributed beamforming and investigated the effects of phase
ambiguity and location estimation error upon the resultant average
beampatterns quantitatively. In the closed-loop scenario, for ex-
ample, it has been shown that the PLL of each sensor node should
be operated with a loop SNR higher than 3 dB in order to reduce
the overall beampattern degradation to less than 3 dB. The results
may thus serve as a design factor that collaborative sensors should
satisfy for distributed beamforming under phase ambiguity.
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