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ABSTRACT

In this paper we consider finite-size slotted ALOHA sensor
networks with multiple packet reception capability and self-
ish sensors. Each sensor wishes to maximize its individual
expected reward. We exploit decentralized channel state in-
formation (CSI) to obtain transmission policies that are op-
timal for each sensor. The problem is formulated as a finite
player,finite action, non-cooperative stochastic game where
each sensor is a selfish but rational player. We prove for
the first time that under the Signal to Interference Noise Ra-
tio (SINR) threshold reception model the optimal transmis-
sion policy for each player belongs to the class of thresh-
old policies. As a result, there exists a Nash-equilibrium at
which all players adopt pure strategies. The optimality of
threshold policies greatly simplifies the estimation of opti-
mal transmission schemes. We present a provably conver-
gent algorithm for finding the threshold for each sensor and
illustrate its performance via numerical examples.

1. INTRODUCTION

In this paper we formulate the problem of selecting opti-

mal transmission probabilities in slotted ALOHA system

given decentralized CSI as a non-cooperative game of a fi-

nite number of players and actions where randomized strate-

gies are allowed.

ALOHA is distributed by nature, it is traditionally based

on the collision model which limits the throughput of any

system to maximum 1 packet/slot assuming that all pack-

ets are lost when two or more users transmit. This collision

model is pessimistic and does not hold in many cases for ex-

ample when CDMA is deployed. The Multi-packet Recep-

tion (MPR) model has almost replaced the collision model

since it was proposed in [3],[4]. The limitations of the MPR

model are: an assumption that all users are indistinguish-

able at all times and totally ignorance of CSI. [1] proposed

a Generalized MPR model (G-MPR) that takes into account
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the channel states of transmitting users and only assumes

long term symmetry among users.

In [4],[11],[5], the system asymptotic stable throughput

and stability of ALOHA are analysed under the MPR model

using a non-game theoretic approach. [1] gives theoretical

limits on the system asymptotic maximal stable through-

put taking into account decentralized CSI under the G-MPR

model also using a centralized design approach. Allen B.

MacKenzie et.al. provides the first results on the stabil-

ity regions of ALOHA systems in the presence of selfish

users under the collision model [8],[7]. A more recent paper

[9] considers stability of slotted ALOHA under the MPR

model. It is shown that an equilibrium exists and rational

users would not try to transmit at all times.

In this paper, we deploy the SINR threshold receiver

model, which is an instance of the G-MPR model. We

prove the optimality of threshold transmission strategies for

players in the ALOHA stochastic game assuming that each

player knows its channel perfectly prior to each transmis-

sion slot. We present a provably convergent algorithm for

estimating the optimal threshold for each sensor.

The paper is organized as follows: Section 2 is a brief

cover of the reception model and problem formulation. The

theorem on the optimality of threshold policies is in Sec-

tion 3. We present a stochastic algorithm for finding the

threshold and prove its convergence in Section 4. Section 5

contains numerical examples.

2. ALOHA GAME MODEL AND PROBLEM
FORMULATION

We consider a slotted ALOHA sensor network of K (K <
∞) sensors. We assume the uplink signal to noise ratios

(SNRs) represent the channel states of a sensor as in [1].

Let the random variable γi denote the channel state of sen-

sor i . We assume that at the begining of each time slot

sensor i knows its channel state (SNR), i.e. the instanta-

neous realization of the random variable γi. Let Fi(.) be

the probability distribution function of γi. For simplicity,

we assume that at each time slot all sensors have packets to
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transmit. This assumption is equivalent to the assumption

that the number of sensors who wish to access the chan-

nel is known in [9]. During a time slot if sensor i does

not transmit a waiting cost c
(i)
w occurs, if it transmits and

its packet is not received successfully a transmission cost

c
(i)
t occurs. Lastly, if sensor i transmits and its packet goes

through a reward of 1 − c
(i)
t is obtained. A neccessary con-

dition is 0 ≤ c
(i)
w < c

(i)
t < 1 for all sensor i. The waiting

and transmission costs may vary among systems and even

sensors depending on several factors such as battery con-

straints, performance requirements. It is worth noting that

without a positive transmission cost, every sensor will al-

ways attempt to transmit regardless of its channel state. In

comparison, the waiting costs can be adjusted to account for

the long-term fairness issue.

Even though our results are valid for a broad class of re-

ception models, for simplicity and rigor of analytical proofs

we specifically consider CDMA systems with matched fil-

ter receivers and a SINR (Signal to Interference Noise Ra-

tio) threshold reception model: a packet from sensor i is

considered successfully received if and only if [10]:

Pj

σ2 + 1
N

∑
i�=j

Pi

=
γj

1 + 1
N

∑
i�=j

γi

> β, (1)

where Pj is the received power of sensor i; Pj = γjσ
2; σ2

is the noise power, γj as defined above is the uplink SNR

and represents channel state of sensor j, N is the spread-

ing gain, β is some constant and often referred to as QoS

requirement.

Our non-cooperative stochastic game then can be set up

as follows:

• The set of players I is the set of sensors indexed by

i = 1, 2, . . . ,K.

• For any player i; i = 1, 2, . . . ,K, the set of actions

Ai = {W,T} where W means to wait, T means to

transmit. A player can choose to transmit with some

probability, i.e. randomized strategies are allowed.

• A strategy is a mapping from channel states to trans-

mit probabilities and the strategy of sensor i will be

represented by a function pi(.) : R+ → [0, 1].

Since we have a game of finite players, finite number of

actions and allow mixed strategies, at least one Nash equi-

librium exists [2]. A Nash equilibrium is a point at which

no player can gain by individually deviating from its cur-

rent policy. Our objective is to prove that there exists a Nash

equilibrium at which every sensor deploys a threshold trans-

mission strategy.

3. OPTIMAL STRATEGY

Without loss of generality let us consider player (sensor) 1.

Recall the notation of a strategy for sensor 1: p1(.) : R+ →
[0, 1]. We drop the index for sensor 1 in this section, i.e. we

write p(.) instead of p1(.). We wish to prove that the best

strategy for sensor 1 is a threshold policy or in other words

the optimal function p∗1(.) is a step function.

We now give an expression for the expected reward of

sensor 1 when it plays with transmit policy p(.), which we

denote by L(p(.)):

L(p(.)) =
∫ ∞

0

(p(γ)Ψ(γ) − (1 − p(γ))cw)f(γ)dγ

=
∫ ∞

0

p(γ)(Ψ(γ) + cw)f(γ)dγ − cw (2)

Ψ(γ) is the expected reward when the channel state of

the sensor is γ. For CDMA ALOHA system with matched

filter receivers and SINR threshold reception model Ψ(γ)
is:

Ψ(γ) =
∫ ∞

0

. . .

∫ ∞

0

I(
γ

1 + 1
N

j=K∑
j=2

(γj)
> β) − ct

dF2(γ2) . . . dFK(γK) (3)

In ( 3) I(.) is the indicator function. Maximizing the indi-

vidual expected reward of the player can be formulated as:

max
p(.)

L(p(.)) (4)

Theorem 1. Consider an ALOHA network of K < ∞ sen-
sors and the non-cooperative stochastic game setting de-
scribed in Section 2. There exists a Nash-equilibrium at
which each sensor adopts a threshold transmission strategy:

p(γ) = I(γ > θ) (5)

for some θ ∈ [0,∞).

Proof. For sensor 1 in the network rewite ( 3) as

Ψ(γ) = EF2(γ2),...,FK(γK) [I (SINR > β)
|p2(.), . . . , pK(.)] − ct

= Pr ((SINR > β) |p2(.),. . ., pK(.)) − ct

= Pr (γ > β ∗ (σ2 + PI)|p2(.),. . ., pK(.)
) − ct (6)

In ( 6), PI is the effective interference power. From ( 6)

it is obvious that Ψ(γ) is a non-decreasing function of γ. In

addition, Ψ(0) = −ct < −cw, Ψ(∞) = 1 − ct > 0. As a

result, there must exist a threshold θ so that Ψ(γ) + cw ≤ 0
for all γ ≤ θ and Ψ(γ) + cw > 0 for all γ > θ. The value

of θ may vary among sensors.
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Recall that the objective is to maximize

L(p(.)) =
∫ ∞

0

p(γ)(Ψ(γ) + cw)f(γ)dγ − cw

It can easily be seen that it is optimal to select

p(γ) =
{

1 if Ψ(γ) + cw > 0
0 otherwise

(7)

In other words p(γ) = I(γ > θ) is always an optimal policy.

It follows that there exists a Nash equilibrium at which all

players adopt (possibly different) threshold policies.

Remark: The above theorem applies to any reception

models that satisfy: 1) the expected probability that a packet

is received correctly Ψ(γ)+ ct is a non-decreasing function

of γ, 2) Ψ(0) + cw < 0, 3)Ψ(∞) + cw > 0.

4. ESTIMATE THE OPTIMAL STRATEGY

In light of therorem 1 we now restrict to the class of thresh-

old policies: p(γ) = I(γ > θ) and since the waiting cost cw

is only a constant we reformulate the optimization problem

given by ( 2),( 4) as:

max
θ

L(θ) =
∫ ∞
0

I(γ > θ) (Ψ(γ) + cw) f(γ)dγ (8)

The gradient of the objective function is then:

∇θL(θ) = ∇θ

∫ ∞

0

I(γ > θ) (Ψ(γ) + cw) f(γ)dγ

= −(Ψ(θ) + cw)f(θ) (9)

Since f(θ) can be absorbed into the step size, to utilize the

gradient ascent method we only need to obtain a unbiased

estimate of

Ψ(γ) = EF2(γ2),...,FK(γK) [I (SINR > β)
|p2(.), . . . , pK(.)] − ct (10)

In practice, this can be done by using a temporary power

control strategy in the learning phase to make sure that the

received SNR is equal to θ and counting the number of

ACKs and NACKs that are sent from the base station.

We define a stationary point, which is also a local max-

imizer of the system throughput as

θ∗ = {θ : ∇θL(θ) = 0,∇2
θL(θ) < 0} (11)

Algorithm 1. An algorithm for Optimal Strategy Selection

• Initialization:

l = 1

θ(l) = θ

• Sampling, evaluation of gradient and update loop

while |Ψ(θ(l)) + cw| > 0 do

Estimate: ̂Ψ(l)(θ(l)) using ( 10)

Update Equation: θ(l+1) = θ(l)−εl

(
̂Ψ(l)(θ(l)) + cw

)
(12)

l = l + 1

end while

• Conditions:
l=∞∑
l=1

εl = ∞;
l=∞∑
l=1

ε2
l < ∞ (C1)

Theorem 2. Convergence of Algorithm 2
The sequence θ generated by Algorithm 1 converges to

the threshold level corresponding to a local optimizer θ∗,
defined in ( 11), of ( 8) and therefore of the sensor’s individ-
ual expected reward.

Proof. For a fixed initial θ the sequence ∇θL
(l)(θ) : l =

1, 2 . . . are i.i.d. Therefore equation ( 12) is an instance

of the well known Robbins Munro algorithm. The conver-

gence of this algorithm is proved in [6] under the condition

(C1) and uniform integrability of ∇θL
(l)(θ). A sufficient

condition for uniform integrability is that the channel distri-

bution has finite variance.

Remark: The above algorithm can be implemented in

real time and can adapt to the changes in the statistics of

the network. For adaptivity of the algorithm, a constant,

reasonably small step size need to be used. In such cases,

the constant step size acts as a forgetting factor.

5. NUMERICAL STUDIES

We present numerical results for slotted ALOHA CDMA

networks with matched filter receivers and random signa-

ture sequences in Rayleigh Fading channels. Assume that

the uplink SNR represents the channel state. We use the

heuristic SINR threshold reception model ( 1).

In the first experiment, we let all sensors have the same

channel distribution, fix the waiting cost at cw = 0.02, vary

the number of sensors in the network and the transmission

cost ct. We use algorithm 1 to find the transmission thresh-

old at a Nash-equilibrium for each sensor in a completely

decentralized manner. It can be seen from figure 1 that the

threshold increases when the network size or the transmis-

sion cost increase. This implies that as the size of the net-

work grows, each sensor transmit with a lower probability

and it is possible to use the transmission cost to control the

average transmission probability of network users.

In the second experiment, we consider a CDMA slot-

ted ALOHA network of 20 sensors with matched filter re-

ceivers. We use a fixed transmission cost ct = 0.2. We

also let all sensors have same channel distribution. Figure
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2 compares the system throughput obtained by using algo-

rithm 1 with two other cases: 1)without transmission con-

trol (which means a sensor always transmit with certainty),

2) Use the algorithm in [4] for optimal transmission control

without CSI. It can also be seen from figure 2 that the sys-

tem throughput obtained by the decentralized algorithm in

this paper is superior to the other two cases.

6. CONCLUSION

In this paper we prove that there exists a Nash equilibrium

at which every rational sensor deploys a threshold transmis-

sion strategy. The optimal thresholds may be different for

different sensors. We present a convergent algorithm for

estimating the optimal threshold for each sensor in a de-

centralized manner. The algorithm is totally distributed, in-

expensive, highly scalable, and can adapt to changes in the

statistical properties of the system and therefore particularly

useful for large scale sensor networks.
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