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ABSTRACT

Linear multiuser detectors and receive antenna array en-
hance the received signal-to-noise ratio, thereby improving
both the throughput and the energy efficiency of sensor net-
works. We assume Rayleigh flat-fading and no uplink chan-
nel state information, and derive analytically the throughput
of large sensor networks with linear multiuser detector and
spatial diversity, for both deterministic scheduling and slot-
ted ALOHA multiple access. We introduce the notion of the
effective energy, and show that it can be minimized by judi-
ciously choosing the number of simultaneous transmissions
and the transmission power.

1. INTRODUCTION

Throughput and energy efficiency are two important perfor-
mance measures in sensor network design. Since sensors
are extremely power-limited, it is desired that each success-
ful transmission consumes the least energy possible. On
the other hand, the network usually poses some minimum
throughput requirement, which may arise from a mild de-
lay constraint,or from stability concerns to avoid the buffer
overflow. The use of multiuser CDMA in the sensor net-
work is therefore justified by the fact that spread-spectrum is
inherently energy-efficient and that multiple packets can be
successfully demodulated during one time slot. Moreover,
it is well-known that antenna array at the receiver enhances
the performance through the effect of resource pooling [1].

In this work, we focus on the uplink transmission, and
assume that a large number of sensors transmit to a common
receiver, which has high data rate connection to remote con-
trol centers, and has replenishable power supply; an exam-
ple of such a network structure is the Sensor Networks with
Mobile Agents (SENMA) [2]. We assume that the receiver
is equipped with L antennas, and is capable of multiuser
detection. We also assume that the sensors have no knowl-
edge of the uplink channel state information, and transmit
with the same power PT . We consider two types of multi-
ple access schemes, one is deterministic scheduling and the

other is slotted ALOHA. For deterministic scheduling, in
each slot k backlogged sensors are scheduled to transmit si-
multaneously, and the choice of sensors does not depend on
the channel states. The throughput, defined as the average
number of successfully decoded packets per slot, of such
network is denoted by C

(L)
k , where k represents the number

of simultaneous transmissions and L represents the number
of receive antennas. If slotted ALOHA is employed, the
maximum stable throughput of an infinite-user multiaccess
network (which serves as a good approximation for densely-
deployed sensor networks) without transmission control is
shown to be C

(L)
∞ = limk→∞ C

(L)
k [3], while the maximum

stable throughput with optimal decentralized transmission
control is a function of C

(L)
k , k = 0, 1, 2, · · · [4]. Moreover,

The energy efficiency of the network is also directly related
to C

(L)
k . Motivated by the above observations, we derive the

analytical expression of C
(L)
k of the CDMA network with

different linear multiuser detectors in Rayleigh flat-fading
channels in Section 2 using recent results on large CDMA
networks [1, 5]. We then introduce the metric of the effec-
tive energy in Section 3, and show that it can be minimized
by judiciously choosing the number of simultaneous trans-
missions k and the transmission power PT .

Here are some further assumptions in our study. We
assume that a packet can be successfully decoded if its SIR
at the detector output is above a certain threshold β,which is
determined by the modulation type and the error-correction
coding scheme employed. Prior to transmission, the sensor
node randomly chooses a spreading sequence of length N .
Without loss of generality we assume similar distances from
the sensor nodes to the common receicer, and the path loss is
normalized to be 1. The additive white Gaussian noise has
variance σ2. The channel gains between each transmitter
and the receiver are independent and Rayleigh distributed.
The received power of each user is the sum of the power
received on all L antennas, given by Pi = PT γi, where the
channel state γi is chi-square distributed:

fγi
(γ) =

γL−1e−γ

(L − 1)!
. (1)
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2. THROUGHPUT ANALYSIS

2.1. Deterministic Scheduling

Denote the signal-to-interference ratio (SIR) of user 1 at the
output of the linear detector by SIR1. It is proved in [1] that
for linear multiuser detectors and microdiversity (the chan-
nel gain distribution for all receive antennas are identical),
if N, k → ∞ with k/N = α and L fixed, SIR1/P1 con-
verges in probability to a positive non-random value a. For
finite-sized systems, the SIR1/P1 fluctuates around a, and
the variance of such fluctuation diminishes as k and N in-
creases. For reasonably large N , using the asymptotic limit
in the analysis of finite-sized network can be justified [1,5].

With P1 = PT γ1 and denoting x = 1
aPT

, we have
SIR1 = γ1

x . The successful reception of user 1 requires
that SIR1 = γ1

x > β, so the probability of success is

P [γ1 > βx] = e−βx
L−1∑
l=0

1
l!

(βx)l, (2)

hence the average number of successes given k transmis-
sions is

C
(L)
k = ke−βx

L−1∑
l=0

1
l!

(βx)l. (3)

Therefore the expressions of C
(L)
k of the three types of lin-

ear detectors assume the same form, and the only difference
lies in the expression of x, which we derive below.

For the matched filter, a is given by [1]

a =
1

σ2 + α
LEP [P ]

, (4)

where E denotes expectation. Since P = PT γ, and Eγ [γ] =
L, we have

x =
σ2

PT
+ α.

Therefore

C
(L)
k,mf = ke

−β( σ2
PT

+ k
N )

L−1∑
l=0

1
l!

[β(
σ2

PT
+

k

N
)]l. (5)

It can be seen that, for any fixed N and L, C
(L)
∞,mf = 0.

For the decorrelating detector, a is given by [5]

a =
{

1−α
σ2 α < 1

0, α ≥ 1,
(6)

so

x =

{
σ2

PT (1−α) , α < 1
+∞, α ≥ 1.

Therefore

C
(L)
k,dec =

{
ke−

βσ2/PT
1−k/N

∑L−1
l=0

1
l! [

βσ2/PT

1−k/N ]l, k < N

0, k ≥ N.
(7)

For the linear MMSE detector, a is the unique fixed
point of the equation [5]

a =
1

σ2 + α
LEP [ P

1+Pa ]
. (8)

Noting that x = 1
aPT

and P = PT γ, we can write (8) as

x =
σ2

PT
+

α

L
xEγ [

γ

x + γ
], (9)

with

Eγ [
γ

x + γ
] =

∫ ∞

0

γ

x + γ

γL−1eγ

(L − 1)!
d γ

=
ex

(L − 1)!

∫ ∞

1

(t − 1)LxLe−xt

t
d t

= Lex

∫ ∞

1

e−xt

tL+1
d t = LexEL+1(x), (10)

where En(x) is the exponential integral function defined as
En(x) =

∫ ∞
1

e−xt/tnd t, x > 0, and the result follows
from repeating integration by parts.

Denoting the right-hand-side of (9) by TL(x), we have

TL(x) =
σ2

PT
+ αxexEL+1(x). (11)

Proposition 3.1 The equation x = TL(x) has a unique
fixed point x∗ on the interval (0,+∞), and x∗ is an attrac-
tive fixed point, i.e., |T ′

L(x)|x=x∗ < 1.
Proof The following properties of the En(x) function

are useful, and we state them without proof:

(a)E′
n(x) = −En−1(x)

(b)xEn(x) = e−x − nEn+1(x)

(c)
1

x + n
< exEn(x) <

1
x + n − 1

(d)ex[En(x) − En+1(x)] >
1

(x + n − 1)(x + n)
(e) lim

x→∞xexEn(x) = 1

Using (a) (b) and (c), we have

T ′
L(x) = α[(x + L + 1)exEL+1(x) − 1] > 0. (12)

Using (a) (c) and (d), we have

T ′′
L(x) = α{exEL+1(x) − (x + L + 1)ex[EL(x) − EL+1(x)]}

< α[
1

x + L
− x + L + 1

(x + L − 1)(x + L)
] < 0. (13)

Therefore TL(x) is a strictly increasing, concave function
on the interval (0,+∞). Note that

lim
x→0

TL(x) =
σ2

PT
> 0, (14)
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and (e) implies that

lim
x→∞TL(x) =

σ2

PT
+ α. (15)

From (12)-(15) it is clear that y(x) = TL(x) and y1(x) = x
must have a unique intersection, and the slope at the inter-
section must be less than 1.

The fact that the fixed point is unique and attractive en-
ables us to solve x∗ with fixed-point iteration [6]: Start with
an arbitrary positive x0, and successively compute x1 =
TL(x0), x2 = TL(x1),· · · , and the sequence (xn) con-
verges to x∗. When N is fixed, x∗ is a function of k and
L. We henceforth denote the fixed point of TL(x) = x cor-
responding to k transmissions and L receive antennas by
x

(L)∗
k . Since x

(L)∗
k is usually close to x

(L)∗
k−1 , when solving

x
(L)∗
k it is computationally efficient to choose x

(L)∗
k−1 as the

initial value of iteration. Finally we have

C
(L)
k,mmse = ke−βx

(L)∗
k

L−1∑
l=0

1
l!

(βx
(L)∗
k )l. (16)

Using (c), we have x
(L)∗
k > σ2

PT
+ k

N

x
(L)∗
k

x
(L)∗
k +L+1

, from which

we can obtain x
(L)∗
k > σ2

PT
+ k

N −L−1. Recall that x(L)∗
k <

σ2

PT
+ k

N . Thus we have

C
(L)
k,mmse < ke

−β( σ2
PT

+ k
N −L−1)

L−1∑
l=0

1
l!

[β(
σ2

PT
+

k

N
)]l.

The right-hand-side of the above inequality goes to zero as
k approaches infinity, so C

(L)
∞,mmse = 0.

Fig. 1. compares the C
(L)
k ’s of the three types of detec-

tors, where N = 16, β = 3dB and PT /σ2 = 3dB. The fig-
ure clearly demonstrates the advantage of the linear MMSE
detector over the traditional matched filter, as well as the
tremendous throughput increase that is possible by adding
receive antennas. Note that for the decorrelator, the multi-
ple antennas only enhance the received power, but does not
improve the multiuser interference suppression ability, and
C

(L)
k is always zero when k is greater than N . However, for

both the linear MMSE and the match filter, the effect of re-
source pooling occurs, and the system behaves like a single
antenna system with spreading gain LN .

2.2. Slotted ALOHA

It is proved in [3] that, the maximum stable throughput of
slotted ALOHA multiple access without transmission con-
trol for an infinite-user system is C

(L)
∞ . In the above we

have shown that, C
(L)
∞ = 0 for all the three types of lin-

ear detectors. Therefore decentralized transmission control
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Fig. 1. Throughput comparison of linear multiuser detec-
tors, N = 16, β = 3dB, PT /σ2 = 3dB

that uses the knowledge of the channel backlog is necessary
to stabilize slotted ALOHA [4] for densely deployed sensor
networks. Denote the transmission probability by p, and the
channel backlog by n, the throughput is given by

λn =
n∑

k=1

(
n

k

)
pk(1 − p)n−kC

(L)
k . (17)

The maximum asymptotic stable throughput of an infinite-
user system by a decentralized control algorithm is [4]

sup λ∞ = sup lim
n→∞λn = sup

t>0
e−t

∞∑
k=1

C
(L)
k

tk

k!
. (18)

Moreover, the constant t = A at which the supremum is
attained is the optimum number of transmissions per slot.
The optimal transmission probability is p = min(A/n, 1).

3. ENERGY EFFICIENCY ANALYSIS

In [7], efficiency, defined as the average number of suc-
cesses over the total number of transmissions, is studied for
SENMA network. However, a high efficiency does not nec-
essarily mean low energy expenditure, since we can always
make the efficiency close to 1 with sufficient power. We
thus propose the metric of effective energy, defined as the
average transmission energy for each successful transmis-
sion, i.e.,

Ee =
kPT T

C
(L)
k

, (19)

where T is the length of each time slot. The effective energy
directly determines how many packets a sensor can success-
fully transmit during its lifetime.
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Fig. 2. Effective energy of the linear MMSE detector, N =
16, β = 3dB, PT /σ2 = 3dB

3.1. The Optimal k for Fixed PT

Since C
(L)
k /k is simply the probability of success, which

obviously decreases with the number of transmissions k,
the effective energy Ee increases with k when PT is fixed.
Therefore when there is no throughput requirement, it is
most energy-efficient to allow only one node to transmit in
each slot. Fig.2 shows the effective energy for the linear
MMSE detector versus k, where the values PT = 10mW
and T = 100ms are used. We observe that the effective
energy is significantly reduced with more antennas. The in-
crease of Ee with k is very slow when L = 4. This has the
significance for sensor networks as a sizable throughput can
be achieved while being energy efficient. When a minimum
throughput requirement Λ is present, k = 1 is often not suf-
ficient. Denote the maximum of C

(L)
k across k by C

(L)
k max.

For a given PT , if the desired throughput Λ ≤ C
(L)
k max, then

the admissible values of k that satisfy the throughput re-
quirement form an interval [kmin, kmax], and the effective
energy is minimized by k = kmin; if Λ > C

(L)
k max, then the

throughput requirement can not be met with PT .

3.2. Optimal PT for Fixed k

If we assume k is fixed, and the transmission power PT is
adjustable, it can be shown that the effective energy is a
convex function of PT , so there exists a value of PT,min

that minimizes Ee. For the matched filter and L = 1, we

have Ee = PT Te
β( σ2

PT
+ k

N ). By differentiation we obtain
that Ee is minimized by PT,min = βσ2. For other cases,
PT,min can be obtained numerically. Note that when there
is a minimum throughput requirement, PT has to be above
a threshold PT,th such that C

(L)
k ≥ Λ. Thus the optimal PT

is given by PT,opt = max(PT,min, PT,th).

3.3. Joint Optimization

The joint optimization of k and PT can be proceeded in two
steps: first, find the minimum effective energy when k is
fixed as described in Section 3.2, then find the global mini-
mum across all k. The above analysis applies to determinis-
tic scheduling. For Slotted ALOHA with control, in (19), k
needs to be replaced with the average number of transmis-
sions per slot t, and C

(L)
k be replaced with the correspond-

ing throughput λ∞ (see (18)), and similar optimizations can
be performed with respect to t and PT .

4. CONCLUSION

Utilizing asymptotic results on large random networks, we
showed analytically that multiuser detection and receive an-
tenna array significantly improve the throughput and energy
efficiency of sensor networks. We proposed the metric of ef-
fective energy, and showed that the effective energy can be
minimized by optimizing the number of simultaneous tran-
missions and the transmission power.
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