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ABSTRACT

A power of R (POR) technique has been proposed to blindly

estimate multipath parameters of the desired user in a multiple ac-

cess ultra wideband (UWB) system. In this paper, we first an-

alyze performance of the POR method in terms of both channel

estimation mean-square-error (MSE) and receiver’s output signal

to interference plus noise ratio (SINR) and bit error rate (BER).

Then we compare this method with both subspace and maximum

likelihood methods based on practical UWB channels. Simulation

results verify our analysis. They also show that the proposed POR

method outperforms the subspace method for heavily loaded sys-

tems, and is superior to the maximum likelihood approach in all

examined examples.

1. INTRODUCTION

Time-hopping (TH) ultra-wideband (UWB) modulation technol-

ogy has attracted considerable research attention recently, due to

its appealing features and recent release of the spectral mask from

the Federal Communications Commission [1].

In a UWB system, a RAKE receiver is typically employed to

detect information symbols. To fully capture signal energy spread

over multiple paths, channel parameters are necessary to construct

a RAKE receiver [2]. However, channel information is not known

a priori, especially in a dense multipath wireless environment.

Although maximum likelihood (ML) channel estimation methods

with/without aid of training sequences [3], [4] have been proposed

to blindly estimate channel, they approximate multiuser interfer-

ence (MUI) as a Gaussian process, leading to degraded perfor-

mance. Recently, blind multiuser detection schemes have been

proposed for UWB communications [5], [6]. Among them, the

POR technique [6], which approximates the noise subspace com-

ponent from the power of the inversed data covariance matrix R−p

with p as a positive integer, has shown satisfactory performance in

Gaussian channels [6].

In this paper, we first conduct performance analysis of the

POR method. Channel estimation mean-square-error (MSE) is ob-

tained. Signal to interference plus noise ratio (SINR) of a RAKE

receiver is studied jointly with channel estimation. Those results
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are further used to predict detection performance. Then, we com-

pare the POR method with subspace and ML methods for a set

of realistic UWB channels. Simulation results show that the POR

method is superior to the subspace method in a system with medium

to heavy loading, and outperforms the ML method in all situations.

Throughout the paper, Kronecker product is denoted by ⊗,

complex conjugate (∗) transpose (T ) by H , inverse by −1, pseudo-

inverse by †, trace of a matrix by tr(), determinant by det().

Re{·} represents real part, E{·} expectation, Ia an identity ma-

trix of degree a whose ith column is denoted by ea,i. 1a is a vector

of length a with all elements equal to one. Integer floor is denoted

as � �. A Q function is defined as Q(x) = 1√
2π

∫ ∞
x

e
−t2
2 dt.

2. POR BASED CHANNEL ESTIMATION AND SYMBOL
DETECTION

2.1. Discrete-Time UWB System Model

Let us consider an M -ary, K-user PPM TH-UWB system. Each

user’s information bit Ik(n) is transmitted over Nf frames. Sup-

pose each frame has Nc chips. If each chip duration can accom-

modate M pulses, a discrete-time UWB system sampled at a pulse

rate has been derived in [5], [6] following the work of [7],

yn =
∑
k,m,l

Ck,m,lgksk,m(n + l) + vn (1)

where for user k we have defined sk,m(n+l) = δ
(
Ik(n+l)−m

)
with m = 0, . . . , M −1 as its M virtual inputs at delay l, Ck,m,l

constructed from user k’s TH codes as a code filtering matrix for its

mth virtual input at delay l, and gk as its unknown channel vector

containing channel coefficients at the pulse rate and power factor.

Eq. (1) resembles a model very similar to a multi-code multirate

CDMA system [8]. It can be further expressed in a compact form

yn =
∑
k,l

Hk,lsk,n,l + vn = Hsn + vn (2)

where sk,n,l = [sk,0(n + l), · · · , sk,M−1(n + l)]T and

Hk,l = [Ck,0,lgk, · · · , Ck,M−1,lgk]. (3)

2.2. Blind Channel Estimation and Symbol Detection

The POR method requires covariance of yn [6]. For this goal,

we first obtain zero-mean data zn = yn − E{yn} [6] as the

following, after applying (1) and the definition of sk,m(n + l)

zn =
∑
k,l

[Ck,0,lgk, . . . , Ck,M−1,lgk]ak,n,l + vn (4)
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where ak,n,l = sk,n,l− 1
M

1M . The vector ak,n,l has been shown

to be correlated with covariance Φ = 1
M

(IM − 1
M

1M1H
M ) at the

rank of M − 1. To facilitate channel estimation, we decompose

Φ as Φ = BaΛ
2
aBH

a and define a new code matrix Sk,j,l =∑M

i=1
bi,j λ̃jCk,i−1,l for j = 1, . . . , M − 1 with bi,j and λ̃j as

the (i, j)th element of Ba and the jth diagonal element of Λa.

Consequently, the covariance of zn can be shown to be

R =
∑
k,l,j

Sk,j,lgkgH
k SH

k,j,l + σ2
vIν (5)

where σ2
v is the noise power, ν is the size of data vector. Express

eigen-decomposition of R as

R =
[

U s Un

] [
Λs + σ2

vI 0
0 σ2

vI

][
UH

s

UH
n

]
. (6)

Suppose user 1 is the desired user and define Sj
∆
= S1,j,0 for

a simple notation. The POR based channel estimation method is

obtained as

gpor = arg min
||g||=1

M−1∑
j=1

gHSH
j R−pSjg (7)

where p is a positive integer. Solution to (7) is immediately ob-

tained as the eigenvector of the matrix
∑

j
SH

j R−pSj correspond-

ing to its minimum eigenvalue γpor (for convenience, we call it

minimum eigenvector).

Since the information symbol is reflected by the position of

the only maximum value in a1,n,0, we need to design M receivers

fm (m = 1, · · · , M ), each detecting one element in a1,n,0. Then

symbol I1(n) is estimated from the index of the receiver yielding

the maximum output

Î1(n) = arg max
m∈{1,···,M}

Re{fH
mzn} − 1.

According to (4), the mth RAKE receiver in detecting the corre-

sponding element in a1,n,0 can be found to be f m = C1,m,0g1.

Invoking (3), the M RAKE receivers can be shown to be F 1,RAKE =
[f 1, . . . , fM ] = H1,0.

3. PERFORMANCE STUDY

3.1. Channel Estimation Performance

3.1.1. Asymptotic Performance

Let the data covariance matrix be estimated as

R̂ =
1

N

N∑
n=1

(yn − 1

N

∑
yn)(yn − 1

N

∑
yn)H . (8)

According to (6), we have

σ2p
v R−p = UnUH

n + U sdiag{( σ2
v

λ2
i + σ2

v
)p}UH

s (9)

Considering (9), it is straightforward to see that if either σ2
v → 0

or p → ∞, the POR method will yield a perfect channel estimate

under some channel identifiability conditions imposed by the sub-

space method.

3.1.2. Noise Induced Channel Estimation Error

Let us define A
∆
=

∑M−1

j=1
SH

j R−pSj . Applying (9), we can

express A into two terms as A = A0 + δA0 where A0
∆
=∑M−1

j=1
SH

j UnUH
n Sj and δA0

∆
=

∑M−1

j=1
SH

j U sdiag{( σ2
v

λ2
i
+σ2

v
)p}

UH
s Sj . Note that the minimum eigenvector of A0 is exactly the

desired channel. Treating δA0 as a perturbation to A0, the per-

turbation to the minimum eigenvector of A0 which is the channel

vector g1 is termed as the channel estimation error induced by

noise. It is given by [10]

δgnoise ≈ −A†
0

M−1∑
j=1

SH
j U sdiag{( σ2

v

λ2
i + σ2

v
)p}UH

s Sjg1.

Each element of the diagonal matrix in the above equation is a

fractional number. Thus, good channel estimation performance

can be achieved for sufficiently large p, irrespective of noise power.

At high SNR, with the assumption that σ2
v � λi for each i, the

factional term (
σ2

v

λ2
i
+σ2

v
)p can be expanded into a Taylor series of

σ2
v , resulting in the following simplified channel estimation error

δgnoise ≈ −σ2p
v A†

0Apg1 + O(σ2p+2
v ). (10)

This result implies that δg1 is at the order of O(σ2p
v ).

3.1.3. Perturbation Error from Finite Data Length

When data length N is finite, a perturbation δR = R̂−R occurs.

It will cause A perturbed as δA = −∑M−1

j=1
SH

j

∑p

k=1
R−kδR

R−(p−k)R−1 Sj . Due to δA, gpor is perturbed as g̃por , causing

a perturbation error δgN

∆
= g̃por − gpor as [10]

δgN ≈ −(A − γporI)†δAgpor ≈
M−1∑
j=1

p∑
k=1

T j,kδRtj,k (11)

where T j,k and tj,k are deterministic quantities given by T j,k =

(A−γporI)†SH
j R−k and tj,k = R−(p−k)R−1Sjgpor . Observe

that δgN is a random quantity due to randomness of δR. There-

fore the covariance of δgN becomes

CovgN
≈

M−1∑
j=1

p∑
k1,k2=1

T j,k1E{δRtj,k1tH
j,k2δR}T H

j,k2 , (12)

and the mean-square-error is equal to the trace of CovgN
. To

compute (12), it is sufficient to determine a general term Ψ(Θ) =
E{δRΘδR}. Following similar steps in [9], one can verify that

for a real system,

Ψ(Θ) =
(N − 1)2

N3

L∑
l=1

1

M

M∑
j=1

(h̃
T

l,jΘh̃l,j)h̃l,jh̃
T

l,j

− (N − 1)2

N3

L∑
l=1

tr(H lΦHT
l Θ)H lΦHT

l

− (N − 1)2

N3

L∑
l=1

H lΦHT
l (Θ + ΘT )H lΦHT

l

+
N − 1

N2
[tr(RΘ)R + RΘT R] +

1

N2
RΘR (13)

and for a complex system

Ψ(Θ) =
(N − 1)2

N3

L∑
l=1

1

M

M∑
j=1

(h̃
H

l,jΘh̃l,j)h̃l,jh̃
H

l,j

− (N − 1)2

N3

L∑
l=1

tr(H lΦHH
l Θ)H lΦHH

l +
1

N2
RΘR
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− (N − 1)2

N3

L∑
l=1

H lΦ[HH
l ΘH l + (HH

l ΘH l)
T ]ΦHH

l

+
N − 1

N2
[tr(RΘ)R + HA(HHΘH)TAHH ] (14)

where H in (2) is partitioned into L sub-blocks as H = [H 1, · · · ,
HL] with each sub-block corresponding to one symbol irrespec-

tive of user, h̃l,j = H lẽM,j , ẽM,j = eM,j− 1
M

IM , A = IL⊗Φ
for shorter notations. In the special case of M = 2, we have

h̃l,1 = −h̃l,2. Then Φ can be simplified for a real system as

Ψ(Θ) = − (N − 1)2

N3

L∑
l=1

H lΦHT
l (Θ + ΘT )H lΦHT

l

+
N − 1

N2
[tr(RΘ)R + RΘT R] +

1

N2
RΘR

while for complex channel and noise as

Ψ(Θ) =
1

N2
RΘR

− (N − 1)2

N3

L∑
l=1

H lΦ[HH
l ΘH l + (HH

l ΘH l)
T ]ΦHH

l

+
N − 1

N2
[tr(RΘ)R + HA(HHΘH)TAHH ].

3.1.4. Channel Estimation Error Due to Noise and Finite N

Based on the above analysis, total channel estimation error due to

combined effects of noise and finite N can be approximated by

E{||g̃ − g1||2} ≈ ||gpor − g1||2 + E{||g̃ − gpor||2} (15)

where the first term is obtained from (10) and the second term

by the trace of (12). The cross term can be neglected because

E{δR} = 0 leads to E{g̃ − gpor} ≈ 0 according to (11).

3.2. Detection Performance

We first study performance of the ideal RAKE receiver when chan-

nel and data covariance are perfectly known. Then we investigate

its sensitivity to sample size. Express zn as zn = H1a1,n,0+un,

where un includes intersymbol interference and MAI, and is ap-

proximated as a Gaussian process for convenience of analysis. As-

sume information symbol 0 is transmitted. According to our data

model, a1,n,0 = eM,1− 1
M

IM = ẽM,1 and then zn = h̃1,1+un.

Denote M RAKE receivers simply by f j for j = 1, · · · , M . Then

a correct detection event is equivalent to {f H
1 zn > fH

j zn, j =

2, · · · , M} = {∆fH
j zn > 0}, where ∆f j = f 1 − f j . Define a

(M − 1) dimensional random vector xn = ∆F Hzn where ∆F
contains all ∆f j as columns. Since zn is assumed Gaussian dis-

tributed, xn is also Gaussian with probability density function as

the following

fx =
e−

1
2 (xn−∆F Hh̃1,1)H (COV(x))−1(xn−∆F Hh̃1,1)√

(2π)M−1det(COV(x))

where COV(x) = ∆F HRint∆F , Rint = R − h̃1,1h̃
H

1,1. In

the special case of M = 2, it is straightforward to show that

BER0 = Q(
∆f H

1 h̃1,1
σ1

). Similarly BER1 = Q(
∆f H

2 h̃1,2
σ2

),

where one can verify that ∆f 2 = −∆f 1, σ2
1 = σ2

2 = ∆fH
1 (R−

h̃1,1h̃
H

1,1)∆f 1. Therefore, BER = BER0 = BER1. More-

over, one can verify that ∆f 1 = 2h̃1,1. After examining BER0,

it is found that BER depends on SINR of the receiver ∆f 1. The

output SINR can be obtained as

SINR =
|∆fH

1 h̃1,1|2
σ2

1

=
∆fH

1 h̃1,1h̃
H

1,1∆f 1

∆fH
1 Rint∆f 1

. (16)

In practice, channel estimation error δgnoise+δgN causes the per-

turbation in ∆f 1 as ∆̃f 1 = 2S1gpor+2S1δgN . Note that gpor is

a deterministic quantity containing noise induced error while δgN

is a random quantity. If we denote 2S1gpor as m and 2S1δgN as

δm for simple notations, then the perturbed SINR can be evalu-

ated as

ŜINR ≈ mH h̃1,1h̃
H

1,1m + E{δmH h̃1,1h̃
H

1,1δm}
mHRintm + E{δmHRintδm} . (17)

Each unperturbed term can be evaluated using covariance matrix

and the desired user’s codes. Each expectation is then computed

as E{δmHXδm} = 4tr{SH
1 XS1CovgN

}, where X may be

replaced by h̃1,1h̃
H

1,1 or Rint correspondingly, and CovgN
can

be evaluated by (12).

4. NUMERICAL EXAMPLES

We first verify analytical results based on 100 independent realiza-

tions. Consider a UWB system with Nc = 8, Nf = 4, K = 8,

and M = 2. 16-path Gaussian channels spread over one frame are

used. Fig. 1 illustrates channel MSE for different p’s, where noise

induced MSE is plotted in Fig. 1(a), perturbation error from finite

N in the presence of 15dB noise is in Fig. 1(b), and total channel

MSE in 15dB noise is in Fig. 1(c). We see that all experimental

results converge to their analytical ones. Fig. 1 (c) also suggests

that the POR method with p = 1 has worst performance due to a

dominant noise induced error. The MSE of p = 2 is very similar

to that of p = 4, indicating that p = 2 in practice can achieve a

good performance and complexity tradeoff. The receiver’s perfor-

mance is presented in Fig. 2, with the output SINR in Fig. 2(a) and

BER performance of RAKE receivers in Fig. 2(b). Similar con-

clusions can be drawn. Discrepancies between the analytical and

experimental BER curves for p = 2, 4 at low SNRs are caused by

finite N , and at high SNRs are caused by possible violation of the

Gaussian assumption on the MUI.

We then compare the POR method (p = 2) with data-aided

ML (DA-ML), non data-aided ML (NDA-ML) [4] and subspace

[5] methods when N = 800. Channels are generated by the IEEE

802.15 channel model CM2 [11] which is for non line-of-sight

(NLOS) communication between 0 to 4 meters. The channel de-

lay spread is truncated at 40ns for reduced complexity, yielding

approximately 80% of the total energy on the average. Nc = 5
and Nf = 3. Fig. 3 (a) ∼ (c) plots channel MSE versus input

SNR for cases of 2, 5 and 8 users. Clearly, the POR outperforms

the DA-ML and NDA-ML in all situations. It also outperforms the

subspace method when 8 users are in the system, indicating ro-

bustness to the system load variation on the same token as [9]. The

BER performance of different receivers is demonstrated in Fig. 4

(a) ∼ (c) correspondingly. Similar conclusions can be drawn. 1

1The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Laboratory or the U. S.
Government.
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Fig. 1. Performance of channel estimation.
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