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Abstract— This paper considers semi-blind channel estimation
and data detection for OFDM systems over frequency-selective
fading channels. Using the maximum likelihood (ML) principle,
we derive a blind channel estimator by taking the time domain
transmitted signal as Gaussian (due to the central limit theorem)
and averaging the likelihood function over the resulting Gaussian
distribution. This estimator is realized using the steepest descent
algorithm. Similarly, our semi-blind data detector integrates the
channel impulse response (CIR) out of the likelihood function,
which is realized using sphere decoding and V-BLAST. Simu-
lation results show that our proposed channel estimator and
data detector perform a fraction of dB within an ideal reference
receiver.

I. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is
a promising candidate for high-data-rate wireless commu-
nications due to its high spectral efficiency, robustness to
frequency selective fading and simple equalization. Coherent
detection requires reliable estimation of the channel impulse
response (CIR). In practical OFDM systems, pilot symbol-
aided channel estimation for OFDM has been widely used
[1], [2]. However, the cyclic prefix (CP) and pilots together
constitute a significant bandwidth loss, which has motivated
the development of blind equalization methods.

Blind channel estimators that exploit the CP-induced re-
dundancy and pilot subcarriers are developed in [3]. Reference
[4] develops a blind subspace approach exploiting CP-induced
cyclostationarity. A blind channel estimator by exploiting the
finite alphabet property of modulation symbols is proposed
in [5]. Subspace-based blind channel estimator using virtual
carriers has been derived in [6]. In [7], a sufficient condition
for blind channel estimation is given.

In wireless environments, the user’s mobility fluctuates the
multipath channel. Non-negligible fluctuations of the CIR
are expected between consecutive OFDM symbols (or even
within each frame). Hence, the subspace based blind channel
estimators [3]–[6], which need several OFDM symbols to
identify the channel, may not be practical and moreover, they
have high complexity. In this paper, we present a semi-blind
channel estimator and a semi-blind data detector. Importantly,

our estimators need just one OFDM symbol. Assuming that
the transmitted time domain samples can be modelled as a
complex Gaussian process, we derive the semi-blind channel
estimator by averaging the likelihood function over the com-
plex Gaussian distribution. The resulting channel estimator
can be realized using the steepest descent algorithm. On the
other hand, averaging the likelihood function over the CIR
gives the semi-blind data detector as a discrete integer least
squares (LS) optimization problem. Since exhaustive search
is computationally prohibitive, we use both sphere decoding
(SD) [8] and vertical-bell labs layered space-time (V-BLAST)
[9] to solve this quadratic optimization problem.

The rest of the paper is organized as follows. Section II
reviews the basic baseband OFDM system model. Section III
introduces the semi-blind channel estimator. In Section IV, we
derive the semi-blind data detector. Furthermore, SD and V-
BLAST algorithms to solve the integer LS problem are also
presented. Section V gives computer simulation results and
Section VI concludes the paper.

Notation: Bold symbols denote matrices or vectors. (·)∗,
(·)T , and (·)H denote conjugate, transpose and conjugate
transpose respectively. Re(x) denotes the real part of x. If
x and y are Gaussian random variables with E[x] = µx,
E[y] = µy and E

[
(x − µx)2

]
= E

[
(y − µy)2

]
= σ2/2,

z = x + jy (where j =
√−1) is a complex Gaussian random

variable (CGRV) and is denoted by z ∼ CN (µx + jµy, σ2).
The discrete Fourier transform (DFT) matrix of size N × N
is given by F = 1/

√
N [e−j 2π

N kl], k, l ∈ 0, 1, · · · , N − 1.
AD denotes a diagonal matrix whose diagonal terms are
components of vector a.

II. OFDM BASEBAND MODEL

In an OFDM system, the source data are grouped and
mapped into the symbols from a constellation Q, which are
modulated by inverse DFT (IDFT) on N parallel subcarriers.
Note that Xk, k = 0, 1, . . . , N − 1 are called OFDM input
symbols, where

Xk =
{

dk k ∈ Id

pk k ∈ Ip
. (1)
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Id is the index set of data subcarriers with Nd elements and
Ip is the index set of subcarriers reserved for pilot symbols
with Np elements. Pilot symbols Xk, k ∈ Ip, are known a
priori at the receiver (hence the name pilot symbols). We have
Nd + Np = N . The average energy of Xk is normalized to
unity with E{|Xk|2} = 1. The term “OFDM symbol” is used
to denote the entire IDFT output {x0, x1, · · · , xN−1}. The
input symbol duration is Ts and the OFDM symbol duration
is NTs. These samples are appropriately pulse shaped to
construct the time domain signal x(t) for transmission. We
assume that the composite CIR which includes transmit and
receive pulse shaping and the physical channel response
between the transmitter and receiver may be modelled as

h(τ) =
L−1∑
l=0

hlδ(τ − τl) (2)

where hl ∼ CN (0, E[h2
l ]) and τl is the delay of the lth tap.

Typically, it is assumed that τl = lTs and this results in a finite
impulse response filter with an effective length L. Assuming
that the channel remains constant during each OFDM symbol,
but it varies between OFDM symbols, and the cyclic prefix
is sufficiently long (Ng > L), the post-DFT received samples
Yk are given as

Yk =HkXk + Wk, 0 ≤ k ≤ N − 1

=
1√
N

N∑
n=0

Hkxne−j2πkn/N + W (k)
(3)

where Hk = H(j2πk/N) is the complex channel frequency
response at subcarrier k, H(jω) is the Fourier transform of
the CIR and Wk, k = 0, 1, · · · , N − 1 are independent and
identically distributed (i.i.d) CGRV’s with zero mean and
variance σ2

n. Assuming τl = lTs, we find H = FLh, where
H = [H0, H1, · · · ,HN−1]T , h ∈ CL is the CIR and FL is a
N ×L submatrix of the DFT matrix F. We can vectorize (3)
as

Y = XDFLh + W (4)

or equivalently
Y = HDFx + W (5)

where XD = diag{X0, · · · , XN−1} and HD =
diag{H0, · · · , HN−1} are diagonal matrices, x =
[x0, · · · , xN−1]T and Y = [Y0, . . . , YN−1]T .

III. SEMI-BLIND CHANNEL ESTIMATION

The received symbol vector Y (5) is Gaussian with mean
HDFx and covariance matrix σ2

nIN . The likelihood function
for the unknown parameters x and HD is given by

f(Y|x,HD) = exp
{
− 1

σ2
n

‖Y − HDFx‖2

}
. (6)

The time domain transmitted signal xn can be modelled
as complex Gaussian via the central limit theorem when N
is large [10]. In blind channel estimation, there always exists

a phase ambiguity, which can be solved by inserting pilot
symbols. If pilot symbols are inserted, the mean of xn is
non-zero. It can be readily verified that the covariance matrix
and mean of x are given by

x̄ = E{x} = FHXp, E{(x − x̄)(x− x̄)H} = FHΛdF (7)

where

Xp(k) =
{

pk k ∈ Ip

0 k /∈ Ip
, Λd(k, k) =

{
1 k ∈ Id

0 k /∈ Id
. (8)

The average of f(Y|x,HD) with respect to x gives the
marginal likelihood function f(Y|HD), which can be ex-
pressed as

f(Y|HD) =
∫

f(Y|x,HD)p(x)dx (9)

where p(x) is the pdf of x. We can evaluate (9) as

f(Y|HD) =
1

det(σ2
n + ΛdHH

DHD)
× exp

{− [
XH

p (Λd + σ2
n(HH

DHD)−1)−1Xp

+ σ2
nYH(HH

DHDΛd + σ2
nIN )−1Y

+2σ2
nRe(YHHD(ΛdHH

DHD + σ2
nIN )−1Xp)

]}
.

(10)

After some manipulations, the log likelihood function
Λ(Y|HD) = ln f(Y|HD) can be simplified to

Λ(Y|HD) = − σ2
n

∑
k∈Iv

( |Yk|2
|Hk|2 + σ2

n

+ ln
(|Hk|2 + σ2

n

))

−
∑
k∈Ip

|Yk − HkXk|2.

(11)

Maximizing (11) is equivalent to minimizing

g(h) =σ2
n

∑
k∈Iv

( |Yk|2
|Hk|2 + σ2

n

+ ln
(|Hk|2 + σ2

n

))

+
∑
k∈Ip

|Yk − HkXk|2.
(12)

Since Hk =
∑L

l=1 hle
−2πlk/N , the CIR h can be estimated

using (12) via the steepest descent algorithm. Note that if no
pilot exists, (12) reduces to the semi-blind estimator

g(h) =
N−1∑
k=0

( |Yk|2
|Hk|2 + σ2

n

+ ln
(|Hk|2 + σ2

n

))
. (13)

We can readily see that h and hejθ both are possible solutions
of (13), where θ is an arbitrary phase shift. This indicates a
problem of phase ambiguity. The resolution of such ambiguity
requires the use of pilot symbols. If Hk’s are independent, the
solution of (13) is |Yk|2 = |Hk|2 + σ2

n.
On the other hand, if sufficient pilots are available, the

channel can be estimated differently. Assuming that Np pilots
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are inserted (Np ≥ L), the channel can be initially estimated
via minimum mean square error (MMSE) estimator [1] as

ĥ =
(
FH

p PH
DPDFp + σ2

nR−1
h

)−1
FH

p PH
DYp (14)

where PD = diag{XIp(1), . . . , XIp(Np)}, Fp is the corre-
sponding Np × L submatrix of F and Rh = E{hhH} is
the covariance matrix of h. If Np < L, the channel can be
estimated by using generalized Schur decomposition. When
all the symbols are pilots, (13) reduces to a least squares (LS)
estimator, which is maximum likelihood. Therefore, our semi-
blind estimator (12) can be viewed as an enhanced LS channel
estimator.

After the channel is estimated using (12), one-tap equal-
ization can be used to recover the transmitted data symbols.
Note that (12) is applicable for any constellations.

IV. SEMI-BLIND DATA DETECTION

A. Semi-blind data detector

Similarly, the received symbol vector Y is Gaussian with
mean XDFLh and covariance matrix σ2

nIN using (4). The
likelihood function for the unknown parameters h and XD is
given by

f(Y|h,XD) = exp
{
− 1

σ2
n

‖Y − XDFLh‖2

}
. (15)

We assume h is a complex Gaussian vector (Rayleigh
fading) with zero mean and covariance matrix Rh. The
average of f(Y|h,XD) with respect to h gives the marginal
likelihood function f(Y|XD), which can be expressed as

f(Y|XD) =
∫

f(Y|h,XD)p(h)dh (16)

where p(h) is the pdf of h. We evaluate (16) to give

f(Y|XD) =
1

det(σ2
nIN + FH

L XH
DXDFL)

× exp
{−YH(XDFLRhFH

L XH
D + σ2

nIN )−1Y
}

.

(17)

If Xk is from a unitary constellation1, i.e., MPSK, XH
DXD =

IN . Hence det(σ2
nIN +FH

L XH
DXDFL) is independent of XD.

Maximizing (17) is equivalent to minimizing

g(X) =YH(XDFLRhFH
L XH

D + σ2
nIN )−1Y

=XT YH
D (FLRhFH

L + σ2
nIN )−1YDX∗ (18)

where YD = diag{Y0, . . . , YN−1} and X =
[X0, . . . , XN−1]T . This semi-blind data detector (18)
also incurs a phase ambiguity. Pilot symbols are thus still
needed. When the data symbols X are estimated, the CIR
can also be estimated using MMSE estimator as

ĥ = (FH
L FL + σ2

nR−1
h )−1FH

L XH
DY. (19)

If the channel remains constant in K symbols, the channel
estimate ĥ can be used to detect the remaining K−1 symbols.

1Note that the semi-blind data detector can also be generalized to non-
unitary constellations.

The semi-blind data detector (18) needs the knowledge of
Rh and σ2

n, which may not be known perfectly in practice.
However, Rh can be estimated using R̂h =

∑K
k=1 ĥkĥH

k /K

and σ2
n can be obtained via

∑K
k=1 ‖Yk −X̂kFLĥk‖2/(KN),

where ĥk and X̂k are the estimated CIR and data symbols
in the k-th symbol respectively. We can also show that the
semi-blind detector (18) is robust to mismatch.

B. Detection algorithms

A straightforward approach to solve (18) is by exhaus-
tively searching all the feasible candidates X, which becomes
impractical as N becomes large. Instead, we suggest two
algorithms to efficiently solve (18).

1) V-BLAST: The quadratic form (18) is similar to the cost
metric in BLAST type MIMO systems. Therefore it can be
solved by using V-BLAST detection algorithm [9]. The V-
BLAST ordering is to find the permutation matrix Π such
that the QR decomposition of H = QR has the property that
min1≤i≤N rii is maximized over all column permutations. For
k = N, N − 1, . . . , 1, the algorithm chooses π(k) such that

π(k) = arg min
j /∈{π(1),...,π(k−1)}

‖(Gk)j‖2 (20)

where (Gk)j is the jth row of Gk, Gk is the pseudo
inverse of Hk and Hk denotes the matrix obtained by zeroing
columns π(1), . . . , π(k − 1) of H. The QR factorization of
H′ = HΠ is denoted by QR = H′. Proceeding in the order
XN , XN−1, . . . , X1 and assuming correct previous decisions,
we can estimate X completely by cancelling interference
successively. This sequential detection suffers from error
propagation even with the above optimal ordering. Efficient
implementations of V-BLAST require O(N3) computations.

2) Sphere decoder: SD generalizes the V-BLAST, where at
each step, one considers all the Xk’s that lie within a sphere
of certain radius. SD has the important advantage over V-
BLAST in that it computes the exact ML solution. For a
fixed radius and for a given lattice structure, the decoding
complexity reduction of SD is usually significant, particularly
in high SNR. However, for large N , which is case of the
OFDM systems, the complexity of SD is high even in high
SNR. The basic SD can be modified to first use Schnorr and
Euchner [11] variant of SD (SESD). When a certain number
of candidate points within the hypersphere have been found by
SD, the best point up to now can be output, which results in
suboptimal detection. Note that the first point found by SESD
is the V-BLAST solution. Therefore both the performance and
complexity of the modified algorithm are between V-BLAST
and SD.

V. SIMULATION RESULTS

We consider a frequency-selective Rayleigh fading channel
with L = 3 and the Gaussian complex coefficients hl with
mean power of σ2

l = E[|hl|2] = σ2
0e−l/5 for l = 1, · · · , L.

An OFDM system with N=32 subcarriers and binary phase
shift keying (BPSK) is simulated. The carrier frequency is

III - 599

➡ ➡



0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

10
1

SNR (dB)

M
S

E
BDD SD
BDD V−BLAST
BCE
MMSE
CRB

Fig. 1. MSE of an OFDM system with BPSK, N = 32 and Np = 4.

5GHz and the data rate is 500kbps. Four pilot symbols are
uniformly inserted into each OFDM symbol to solve the phase
ambiguity. Both the semi-blind channel estimator (BCE) (12)
and the semi-blind data detector (BDD) are tested on OFDM
systems with the above simulation parameters.

Fig. 1 shows the mean square error (MSE) of CIR. The
BDD first uses (17) to detect data symbols and then substitutes
the detected data symbols into (19) to estimate the CIR. The
performance of MSE of BDD with V-BLAST is almost the
same as BDD with SD at MSE= 10−2. They perform 4dB
better than the BCE and 9dB better than the MMSE. The
performance loss of BCE compared to BDD can be com-
pensated by using the decision directed algorithm. However,
with the same number of pilots, the BCE performs better than
the MMSE estimator (14). The BCE has 5dB gain over the
MMSE at MSE=10−2. This verifies the BCE (12) can use the
side information embedded in the received signal to enhance
channel estimation. The Cramér-Rao Bound (CRB) of the CIR
is also shown. In the high SNR region, the BDD achieves the
CRB.

The BER is compared in Fig. 2. The performance of one-
tap equalization with the CIR being perfectly known to the
receiver (ideal case) is used as the benchmark. Both BCE and
BDD performs close to the benchmark. Compared with it, the
BCE has a 1dB loss, the BDD with V-BLAST has a 0.6dB loss
and the BDD with SD also has a 0.6dB loss at BER=10−3.
The performance of V-BLAST for BDD is comparable to that
of SD in high SNR. Even in low SNR, the gap between SD
and V-BLAST is within 0.5dB. The performance of MMSE
channel estimator (14) is also shown. The BCE has a 1.6dB
gain over MMSE at BER=10−3. Though BDD performs better
than BCE, the performance loss using BCE is negligible and
the complexity of BDD is high even using V-BLAST and SD.
In a practical system, BCE is preferable.

VI. CONCLUSION

We have developed a novel semi-blind channel estimator
and a semi-blind data detector in OFDM systems. The semi-
blind channel estimator is derived by modelling the time
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Fig. 2. BER of an OFDM system with BPSK, N = 32 and Np = 4.

domain transmitted signal as Gaussian (the central limit
theorem). Our semi-blind channel estimator, an enhanced LS
estimator, is obtained by averaging the likelihood function
over the CIR, resulting in a quadratic optimization problem.
V-BLAST and SD have been used to efficiently detect data
symbols. Simulation results show that our proposed channel
estimator and data detector perform close to the ideal case.
The detectors proposed in this paper may also be extended to
MIMO-OFDM systems and OFDM over fast fading channels.
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