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ABSTRACT

This paper evaluates the performance of the data-bearing approach
for pilot-embedding for joint data detection and channel estimation
in space-time (ST) coded multiple-input multiple-output (MIMO) sys-
tems. Performance measures, such as the minimum mean-squared er-
ror (MMSE) of channel estimation, Cramer-Rao lower bound (CRLB),
and the Chernoff’s bound of the estimated-channel bit error rate (BER)
for ST codes, are explored to examine the proposed scheme. The
power allocation problem for data and pilot parts is also addressed by
optimizing the probability-of-error upper-bound (PEUB) mismatched
factor subject to certain constraints. Three kinds of data bearer and
pilot structures are investigated via simulations, including time- mul-
tiplexing (TM)-based, ST-block-code (STBC)-based, and code- multi-
plexing (CM)-based data bearer and pilot matrices. Among these three
structures, the CM-based scheme provides superior detection perfor-
mance over the TM-based and the STBC-based schemes for nonquasi-
static flat Rayleigh fading channels, while the performances of these
three structures are quite close for quasi-static flat Rayleigh fading
channels.

1. INTRODUCTION

Recently, the space-time (ST) codes have been studied for MIMO com-
munications [10, 11], where the bit error rate (BER) of the communi-
cation systems is significantly improved without increasing transmis-
sion power by exploiting transmit diversity [10]. A major challenge in
wireless ST communications employing a coherent detector is channel
state information acquisition. Typically, the channel state information
is acquired or estimated by using a pilot or training signal, a known
signal transmitted from the transmitter to the receiver. This technique
has been widely applied because it is feasible to implement, and it
allows a channel estimator with a low computational complexity [2].
One nonblind or pilot-based MIMO channel estimation were proposed
in [1, 9].

Our purpose here is to design a novel pilot-embedding approach
for ST coded MIMO systems with affordable computational cost and
better fast-fading channel acquisition. The basic idea is to simplify
channel estimation and data detection processes by taking advantage
of the null-space and orthogonality properties of the data-bearer and
pilot matrices. The data-bearer matrix is used for projecting the ST
data matrix onto the orthogonal subspace of the pilot matrix. By the
virtue of the null-space and orthogonality properties, in our proposed
data-bearing approach for pilot-aiding, a block of data matrix is added
into a block of pilot matrix, that are mutually orthogonal to each other.
The benefit that we are able to expect from this approach is better chan-
nel estimation performance, since the estimator can take into account
the channel variation in the transmitted data block. We also provide
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performance analysis of this approach. The minimum mean-squared
error (MMSE) of the channel estimation, Cramer-Rao lower bound
(CRLB), and the Chernoff’s bound of the estimated-channel bit error
rate (BER) for ST codes are analyzed for examining the performance
of the proposed scheme. The optimum power allocation for the data
and the pilot parts is also determined by optimizing the probability-
of-error upper-bound (PEUB) mismatched factor subject to a constant
block power and an acceptable threshold of the MMSE of the channel
estimation.

The rest of this paper is organized as follows. In Section 2, we
present MIMO channel and system models first, and then we present
the proposed data-bearing approach for pilot-embedding, including cha-
nnel estimator and data detector. In section 3, performance analysis for
the proposed scheme is presented, and the optimum power allocation
scheme is discussed in Section 4. The simulation results are shown in
Section 5, and we conclude this paper in Section 6.

2. THE DATA-BEARING APPROACH FOR
PILOT-EMBEDDING

2.1. MIMO Channel and System Models

We briefly describe the MIMO channel and system models used in this
paper. We consider the MIMO communication system with Lt trans-
mit antennas and Lr receive antennas. In general, for a given block
index t, a ST symbol matrix U(t) is an Lt × M codeword matrix
transmitted across the transmit antennas in M time slots. The received
symbol matrix Y(t) at the receiver front-end can be described as fol-
lows [10],

Y(t) = H(t)U(t) + N(t), (1)

where H(t) is the Lr × Lt channel coefficient matrix and N(t) is the
Lr×M additive complex white Gaussian noise matrix with zero mean
and variance σ2

2
I(MLr×MLr) per real dimension. The elements of

channel coefficient matrix H(t) are assumed to be independent com-
plex Gaussian random variables with zero mean and variance 0.5 per
real dimension. Or equivalently, an independent Rayleigh fading chan-
nel is assumed. Our problems are to estimate the channel coefficient
matrix H(t) and the ST symbol matrix U(t) by using the pilot or train-
ing signal embedded in the ST symbol matrix U(t).

2.2. The Proposed Scheme

In what follows, we summarize the data-bearing approach for pilot-
embedding proposed in [6]. In this approach, the pilot signal is firstly
added into the ST data, and then regard this signal combination as the
ST symbol. Our motivation of this approach is to distribute the pilot
signal onto the ST data in order to capture the variation of the channel
at every instant for achieving a better channel estimate. The proposed
pilot-embedded ST symbol matrix U(t) can be expressed as follows,

U(t) = D(t)A + P, (2)
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where D(t) ∈ C
Lt×N is the ST data matrix, A ∈ R

N×M is the data
bearer matrix with N being the data time slots, and P ∈ R

Lt×M is the
pilot matrix. The necessary properties for the proposed data-bearing
approach for pilot-embedding are as follows,

APT = 0 ∈ R
N×Lt ,PAT = 0 ∈ R

Lt×N ,

AAT = βI ∈ R
N×N ,PPT = αI ∈ R

Lt×Lt , (3)

where β is a real-valued data-power factor for controlling the data-part
power, α is a real-valued pilot-power factor for controlling the pilot-
part power, 0 stands for an all-zero-element matrix, and I stands for an
identity matrix.

There are three possible structures of data-bearer and pilot matri-
ces, in which the elements of these matrices are real numbers, that
satisfy the properties in (3) as follows.

1.) Time-Multiplexing (TM)-Based Matrices
The structures of these matrices are given as

A =
√

β
[
0(N×Lt); I(N×N)

]
,

P =
√

α
[
I(Lt×Lt);0(Lt×N)

]
, M = N + Lt, (4)

where ; stands for matrix combining. In this structure, the Lt × Lt

identity matrix I is used as a pilot or training symbol. In addition,
this structure are similar to the PSAM concept in [2], because it em-
ploys the time-multiplexing structure for pilot and data allocation, and
has been used in many literatures [9]. Therefore, the existing PSAM
technique is subsumed in the proposed general idea in (2).

2.) ST-Block-Code (STBC)-Based Matrices
The structures of these matrices are given as

A =
√

β
[
0(N×τ); I(N×N)

]
,

P =
√

α
[
STBC(Lt×τ);0(Lt×N)

]
, M = N + τ, (5)

where τ is the number of time slots used for transmitting one ST block
code. In this structure, the major difference from the TM-based struc-
ture is that it employs the normalized known ST block code [11] as the
pilot symbol instead of using the identity matrix. It also inherits the
time-multiplexing structure in pilot and data allocation. This kind of
data bearer and pilot matrices have been used in [3], for instance.

3.) Code-Multiplexing (CM)-Based Matrices
The structures of these matrices are given as

A =
√

βWH[1 : N ](N×M),

P =
√

αWH[N + 1 : M ](Lt×M), M = N + Lt, (6)

where WH[x : y] denotes a sub-matrix created by splitting the M ×M
normalized Walse-Hadamard matrix [4] starting from xth-row to yth-
row. Unlike the time-multiplexing structure employed for pilot and
data allocation in the TM-based and the STBC-based structures, in this
structure, the code-multiplexing structure is employed instead. Due
to the even distribution inherited from the code-multiplexing structure
over the transmitted ST symbol block, we are able to expect superior
channel estimation performance over the other two structures. The dis-
advantage of this structure is the limitation of dimensionality of Walse-
Hadamard matrix, which has a dimension proportionally to 2n, n ∈ I.
In addition, this structure provides an instructive example of the pro-
posed general idea in (2) for pilot-embedding.

2.2.1. Channel Estimation

The channel estimation procedure can be summarized as follows (please
refer to [6]):

1.) Post-multiplying the received symbol matrix Y(t) in (1), in
which (2) is substituted, by the transpose of the pilot matrix PT ; di-
viding the result by α; and using the properties in (3) to arrive at

y(t) = h(t) + n(t), (7)

where y(t) � vec(Y(t)PT

α
), h(t) � vec(H(t)), n(t) � vec

(N(t)PT

α
) with vec(·) being vectorizing conversion. The second-order

statistics of the pilot-projected noise vector n(t) can be expressed as
follows,

µn(t) = 0(LtLr×1), Vn(t) =
σ2

2α
I(LtLr×LtLr). (8)

where µn(t) and Vn(t) stand for the mean vector and the covariance
matrix of the pilot-projected noise vector n(t) per real dimension, re-
spectively.

2.) The maximum-Likelihood (ML) channel estimator that maxi-
mizes the log-likelihood function ln(p(y(t)|h(t))) is given by

ĥ(t) = y(t) or Ĥ(t) =
Y(t)PT

α
. (9)

2.2.2. Data Detection

Based on [6], the decoding procedure can be summarized as follows:
1.) Post-multiplying the received symbol matrix Y(t) in (1), in

which (2) is substituted, by the transpose of the data bearer matrix
AT ; dividing the result by β; and using the properties in (3) to arrive
at

Y1(t) = H(t)D(t) + N1(t), (10)

where Y1(t) = Y(t)AT

β
and N1(t) = N(t)AT

β
. The second-order

statistics of the data-bearer-projected noise vector n
′
(t) = vec(N1(t))

can be expressed as follows,

µn
′
(t) = 0(LrN×1), Vn

′
(t) =

σ2

2β
I(LrN×LrN), (11)

where µn
′
(t) and Vn

′
(t) stand for the mean vector and the covariance

matrix of the data-bearer-projected noise vector n
′
(t) per real dimen-

sion, respectively.
2.) The ML receiver is employed by computing the decision matric

and deciding the codeword that minimizes this decision matric [10],

{d̂i
t} = min{di

t}
{∑N

t=1

∑Lr
j=1 |yj

t − ∑Lt
i=1 ĥj,id

i
t|2

}
,

∀di
t, i ∈ {1, . . . , Lt}, t ∈ {1, . . . , N}, (12)

where yj
t denotes the jth-row tth-column element of Y1(t) in (10),

ĥj,i denotes the jth-row ith-column element of Ĥ(t) in (9), and d̂i
t

denotes the ith-row tth-column element of the estimated ST data ma-
trix D̂(t).

3. THE PERFORMANCE ANALYSIS FOR THE PROPOSED
SCHEME

3.1. Channel Estimation Performance Analysis

We analyze the channel estimation error first, and then compare it to
the Cramer-Rao lower bound (CRLB), which is widely accepted for
performance evaluation of the estimator.

3.1.1. Channel Estimation Error

A channel estimation error vector can be evaluated as follows,

h̃(t) = h(t) − ĥ(t). (13)

Substituting (9) into (13), the variance matrix of the channel esti-
mation error is given by

Var
[
h̃(t)

]
= Vn(t). (14)

The minimum mean-squared error (MMSE) of the channel estima-
tion is given by

MMSE = trace
{

Var
[
h̃(t)

]}
=

σ2LtLr

α
. (15)
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3.1.2. Unbiasedness and Cramer-Rao lower bound (CRLB)

Using (9) and µn(t) obtained in (8), the unbiasedness of our proposed
channel estimator is given by

E[ĥ(t)] = E [h(t) + n(t)] = µh(t) (16)

where µh(t) represents the mean vector of h(t). It is clear that our
estimator is unbiased, where the expectation vector of our estimator is
equal to the mean vector of the channel coefficient vector h(t).

The CRLB for an unbiased estimator is defined as [8]

Var
[
ĥ(t) − h(t)|h(t)

]
=

[
−E

[
∂2 ln(p(y(t)|h(t)))

∂h2(t)

]]−1

= Vn(t). (17)

One can see that the channel estimator achieves the desired prop-
erties of a good estimator that is unbiased, and achieves the CRLB, i.e.
the trace of (17) is equal to (15).

3.2. Data Detection Performance Analysis

Assuming full rank ST codes are employed, which can be relaxed
in general, and considering independent Rayleigh distributions of the
channel, the Chernoff’s upper bound of the average probability of trans-
mitting a codeword d � (d1

1d
2
1 · · · dLt

1 · · · d1
Nd2

N · · · dLt
N )T and decid-

ing in favor of a different codeword e � (e1
1e

2
1 · · · eLt

1 · · · e1
Ne2

N · · · eLt
N

)T is given by [7] (see also [6]),

P (d → e)Ĥ(t) ≤
(

Lt∏
i=1

λi

)−Lr
⎛
⎝ σ2

Q

4
(

1
β

+ 1
α

)
σ2

⎞
⎠

−LtLr

, (18)

where λi is the eigenvalue of the code-error matrix C(d, e) defined as
Cp,q = xH

q xp where xp = (dP
1 − eP

1 , . . . , dP
N − eP

N )T and σ2
Q = 1+

σ2

α
is the variance of the element of the estimated channel coefficient

vector ĥ(t).
Notice that (18) involves the variance of the channel estimation

error, i.e. σ2

α
, and the data-bearer-projected noise, i.e. σ2

β
, into its

expression; therefore, it completely reveals the underlined effects of
pilot- and data-power factors on the probability of error. Hence, this
probability of error can be reasonably used as a cost function for opti-
mum power allocation problem.

Let us define the probability of error upper bound (PEUB) mis-
matched factor between the estimated channel coefficient case and the
ideal case where channel coefficients are known [10] as follows,

η = ln

(
P (d→e)

Ĥ(t)
P (d→e)H(t)

)
= LtLr ln

(
Ps

(
1
β

+ 1
α

)
(1+ σ2

α
)

)
, (19)

where Ps is the normalized power allocated to the data part when the
channel coefficients are known.

This PEUB mismatched factor is used for performance measure in
order to optimally allocate the power to the data and the pilot parts.

4. OPTIMUM POWER ALLOCATION

We now address the power allocation problem in order to optimally
allocate the power to the data and the pilot parts. To yield a fair com-
parison, we assume the constant block power case, where the power
of the pilot-embedded ST symbol matrix U(t) is remained the same
for different approaches. We show that the normalized power allocated
to the pilot-aided ST symbol matrix U(t), which is normalized by the
transmit antenna numbers Lt, can be expressed as follows,

Ps =
E

[‖D(t)A‖2
]

Lt
+

E
[‖P‖2

]
Lt

= P
′
s + Pp = β + α, (20)

where P
′
s = β is the normalized power allocated to the data part and

Pp = α is the normalized power allocated to the pilot part.

The objective is to minimize the PEUB mismatched factor η in
(19) with respect to the pilot-power factor α subject to the constant
block power and the acceptable MMSE of the channel estimation con-
straints. In addition, the acceptable MMSE of the channel estimation
is a threshold that indicates the acceptable channel estimation error of
the reliable channel estimates, which in turn yield the good probability
of error performances. Substituting β = Ps −α into (19), the problem
formulation is given by

min
α

ln

(
P 2

s

(α + σ2)(Ps − α)

)
, (21)

where MMSE≤ T with T being the acceptable threshold of the MMSE
of the channel estimation.

In summary, we propose to determine the optimum pilot-power
factor α∗ under different signal-to-noise ratio (SNR) scenarios as fol-
lows (see also [6]),

α∗ =

{
LtLrPs

T+2LtLr
; SNR < 1 + 2LtLr

T
Ps−σ2

2
; Otherwise.

(22)

The acceptable threshold T for the MMSE of channel estimation is
usually small and is determined by practice, e.g. the simulation results
(in Section 5).

5. SIMULATION RESULTS

We now demonstrate the performance of the proposed data-bearing ap-
proach based on simulations. Without loss of generality, we examine
a 4 × 3 orthogonal ST block code of [11]. Three data bearer and pilot
structures proposed in Section 2.2 are investigated. The setting param-
eters of our experiments are: the normalized pilot-embedded ST sym-
bol power is 1 watt/pilot-embedded ST symbol block; the time slots
are 8 time slots/pilot-embedded ST symbol block; and the number of
transmit antennas is 3. For the nonoptimum power allocation, the data
part’s power is constantly allocated 80% and the pilot part’s power is
constantly allocated 20% of the normalized pilot-embedded ST symbol
power, according to the results in [9] that the maximum transmission
rate is achieved. In addition, 4-PSK modulation is employed in these
experiments and the acceptable threshold of the MMSE of the channel
estimation is 0.5.

5.1. The Quasi-Static Flat Rayleigh Fading Channel

In this situation, the channel coefficients of the channel coefficient ma-
trix H(t) in (1) are assumed to be independent complex Gaussian ran-
dom variables with zero mean and variance 0.5 per real dimension.

In Fig.1, we plot BERs of the pilot-embedded MIMO system with
applying the optimum and the nonoptimum power allocation strate-
gies, in comparison with the ideal-channel MIMO system, when 1 and
2-received antennas are employed. In the ideal channel case, the chan-
nel coefficients are assumed known, thus it serves as a performance
bound. Notice that the optimum power allocation scheme provides bet-
ter performance than the nonoptimum power allocation scheme. For
instance, at BER = 10−3, the SNR differences are about 2 dB for
both the 1 and 2-received antenna scenarios. Furthermore, the SNR
differences between the case of ideal-channel and the pilot-embedded
optimum-power-allocated MIMO systems are about 2.5 dB for both
the 1 and 2-received antenna scenarios.

In Fig.2, we plot MMSEs of the channel estimation of the pilot-
embedded MIMO system with applying the optimum and the nonopti-
mum power allocation strategies, when 1 and 2-received antennas are
employed. Notice that the MMSEs of the optimum power allocation
scheme is less than that of the nonoptimum power allocation scheme
for all SNRs. In addition, the MMSEs of the channels estimation of
the 2-received antenna scenario are larger than that of the 1-received
antenna scenario as explained by referring to (15). Three types of data
bearer and pilot matrices yield the same MMSE which coincides with
the trace of the CRLB.
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Fig. 1. The graph of BERs in the quasi-static flat Rayleigh fading
channel.
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Fig. 2. The graph of MMSEs of the channel estimation in the quasi-
static flat Rayleigh fading channel.

5.2. The Nonquasi-Static Flat Rayleigh Fading Channel

In this situation, we consider the situation where the channel coeffi-
cient matrix is not constant over the ST symbol block. Without loss
of generality, we give an example where the channel coefficient matrix
changes twice within one ST symbol block, i.e. there exists H1(t) and
H2(t) in the tth-block ST symbol matrix. In addition, the normal-
ized time-varying channel is modelled as Jakes’ model [5], where the
Doppler’s shifts are changing, i.e. 30, 90, 270, 810, 2430 Hz .

In Fig.3, we plot BERs of the pilot-embedded optimum-power-
allocated MIMO system with different Doppler’s shifts, where the Dop-
pler’s shifts of the normalized time-varying channel are 10, 30, 90, 270,
810, and 2430 Hz . Notice that, when Doppler’s shifts are small, e.g.
10, 30 Hz , the probability of detection error of the three types of data
bearer and pilot matrices are quite similar; however, when Doppler’s
shifts are getting larger, e.g. 90, 270, 810, 2430 Hz , the CM-based
structure is better than the TM-based and the STBC-based structures,
as we anticipated earlier. Since the nonquasi-static flat Rayleigh fad-
ing channel is a severe situation, there exist error floors that increase
significantly as the Doppler’s shift increases, which is resulted from a
faster time-varying channel.

6. CONCLUSION

In this paper, we have briefly explained and analyzed the performance
of our data-bearing approach for pilot-embedding for joint data detec-
tion and channel estimation in ST coded MIMO systems. For quasi-
static flat Rayleigh fading channels, the performances of three data
bearer and pilot matrices, i.e. the TM-based, STBC-based, CM-based
one, are quite similar, where the optimum-power-allocated scheme
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Fig. 3. The graph of BERs of the pilot-embedded optimum-power-
allocated MIMO system in the nonquasi-static flat Rayleigh fading
channel.

yields better performance than that of the nonoptimum-power-allocated
schemes in which the SNR differences are about 2 dB, at BER = 10−3.
Furthermore, for nonquasi-static flat Rayleigh fading channels, the
CM-based data bearer and pilot matrices show superior performances
over the TM-based and STBC-based structures especially under the
scenarios with high Doppler’s shifts, where the error floors of the for-
mer are smaller than the other two. Clearly, from the simulation re-
sults, for our specific problem, the optimum power allocation obtained
from optimizing the PEUB mismatched factor is better than optimizing
solely the MMSE of the channel estimation or the open-loop ergodic
capacity, as stated in [9].
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