
CRAMÉR-RAO LOWER BOUND FOR LINEAR INDEPENDENT COMPONENT ANALYSIS
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ABSTRACT

This paper derives a closed-form expression for the Cramér-

Rao bound (CRB) on estimating the source signals in the

linear independent component analysis problem, assuming

that all independent components have finite variance. It is

also shown that the fixed-point algorithm known as FastICA

can approach the CRB (the estimate can be nearly efficient)

in two situations: (1) when the distribution of the sources is

not too much different from Gaussian, for symmetric ver-

sion of the algorithm using any of the custom nonlinear

functions (pow3, tanh, gauss), and (2) when the distribution

of the sources is very different from Gaussian (e.g. has long

tails) and the nonlinear function in the algorithm equals the

score function of each independent component.

1. INTRODUCTION

The purpose of Blind Source Separation (BSS) is the ex-

traction of a set of signals based merely on their mixtures.

The instantaneous linear mixing model is presently a well-

studied problem, in particular in Independent Component

Analysis (ICA), one of the most successful methods for BSS

[5]. We can express the mixing process as� � 	 � 
(1)

where � � ��� � � � � � � � � �...
. . .

...

� � � � � � � � �
! "#

denotes a matrix of $ samples of % mixed signals; similarly,�
denotes a matrix of samples of the original signals & ( * .

	
is an unknown regular % , % mixing matrix. In this paper,

we consider a model by which & ( * are mutually independent

i.i.d. random variables with probability density functions

(pdf) / ( 0 & ( * 3 5 � 7  : : :  % . Variables with the same pdf as

& ( * for all < � 7  : : :  $ will be denoted by & ( . The mutual

independence of & ( is the basic assumption of ICA.

Thanks to an increasing attention to this problem, many

algorithms have been developed in the last two decades, for

instance, FastICA [3], JADE, and Infomax; for a review, see

[5]. The differences between proposed algorithms are char-

acterized by their accuracy, convergence, or computational

demand: those are the natural questions when applying ICA

in practice. Therefore, some theoretical analysis [2, 6, 9] or

experimental comparisons have been provided [4]. In this

article, we propose a Cramér-Rao lower bound for ICA, es-

pecially, for the elements of the gain matrix (defined below),

which give us an algorithm independent lower bound for

separation performance. It is also shown that the algorithm

FastICA (the symmetric version) can approach this bound,

when the original signals are nearly Gaussian.

2. CRAMÉR-RAO LOWER BOUND FOR ICA

Consider a vector of parameters ? being estimated from a

data vector @ , having probability density / B D E 0 @ H ? 3 , using

some unbiased estimator I? . The Cramér-Rao lower bound

(CRB) is the lower bound for the variance of I? . Assume that/ B D E is smooth and the following Fisher information matrix

exists:J
E �

E E L 7/ MB D E N / B D E 0 @ H ? 3
N ? P N / B D E 0 @ H ? 3

N ? Q S T (2)

Then, under some mild regularity condition [1], it holds

cov I? V CRB E � J X
�E :

Next, if Y � Y 0 ? 3 is a differentiable function of ? , then the

Fisher information matrix for Y exists as well and is equal

to

J \ � ^ X
�E

J
E ^ X

SE 
(3)
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where
� � is the Jacobian of the mapping � � � � . If the map-

ping is linear, or � � � � 
 � � for some regular matrix
�

,

then
� � 
 �

.

In the context of ICA, we first focus on deriving the

CRB for estimation of the de-mixing matrix � 
 � �
� ,

i.e., the parameter vector is � 

vec � � � .

2.1. Assumptions

The following assumptions will be considered throughout

this paper:� �� � � �

E � ! �� # 
 % ' ) � * � � ) � . ) 0 1 3

(4)4 � � � �

E � 6 �� � ! � � # 
 % ' 6 �� � ) � * � � ) � . ) 0 1 3

(5)< � � � �

E � ! �� 6 � � ! � � � # 
 % ' ) � 6 �� � ) � * � � ) � . ) 0 1 3 ?

(6)

where @ 
 B ? E E E ? . and 6 � denotes the score function of the

corresponding pdf, i.e., 6 � � ) � 
 F H IJ K M OH J K M O . The mean value

of the original signals is irrelevant in ICA, hence, we shall

assume that it is zero. Variances � �� can be assumed to be

equal to one, without any loss of generality.

2.2. The Fisher information matrix

From the independence of the original signals it follows that

their mutual pdf is * P � R � 
 T U� W � T XY W � * � � ! � Y � . Then, us-

ing the transformation
\ 
 �

�
� R

,* ^ � \ � 
 _ ` b c � _ * P � � \ � E
(7)

Incorporating this density into (2) the h j -th element of the. � k . � Fisher information matrix, where h 
 � @ F B � . 1 m ,j 
 � n F B � . 1 q
, and r � Y denotes the @ m -th element of the

matrix � , ist v x 

E y _ ` b c � _

�
�* �P � R � z * ^

z r � Y z * ^
z r { } � E

(8)

The direct computation is rather lengthy and due to lack of

space we refer to [8], where it is shown that

z * ^
z r � Y 
 _ ` b c � _ * P � R � � � Y � 1 X�� W � U�� W �

* �� � ! � � �* � � ! � � � � Y � ! � � �
andt v x 
 � � F B � � � Y � � } { 1 � � Y { � } � 11 � � { � � Y � � } � � < � F � � 1 � � { � 4 � U�� W � �

� �W { � Y � � } �
(9)

with 4 � , < � defined in (5)-(6),
� � { is the Kronecker’s delta,

and � � Y denotes the @ m -th element of the mixing matrix
�

.

It can be shown, using (3), that
t

� 
 � � � � � �
t �

� � � � � ?
(10)

where

t �
stands for the Fisher information matrix derived

for a case when
� 
 � (identity matrix); � denotes the

Kronecker product. Substituting � � Y 
 � � Y into (9), it easily

follows that�
t �

� v x 
 � � F B � � � Y � � } { 1 � � Y { � } � 11 � � � Y � � } { � } � � < � F 4 � � 1 � � { � } Y 4 � � E
(11)

Some properties of the matrix will be shown in Appendix.

2.3. Accuracy of the estimation of � 
  � �
Let

 � denote an estimator of the de-mixing matrix � . Es-

timated signals ¡R
are then ¡R 
  � \ 
  � � R

. It is inter-

esting to compute the CRB for the elements of the so-called

gain matrix � 
  � �
, because they characterize the resid-

ual presence of the m F
th component in estimating the @ F

th

independent component for @ ? m 
 B ? E E E ? . , @ ¦
 m . Note

that the new parameter vector � § 

vec � � � is just a lin-

ear function of the parameter � , i.e., � § 

vec �  � � � 
� � � � � � vec �  � � 
 � � � � � � � . Then, using (3) and (10),

the Fisher information matrix of � § is
t

§ 
 � � � � � �
t

� � � � � � 
 t � E
(12)

Note that

t
§ is independent of the mixing matrix

�
. The

CRB for the @ m F
th element of � is

var � � � Y � © CRB � � � Y � 
 �
t � �

� �
v v

where h 
 � @ F B � . 1 m and @ ¦
 m . In Appendix A it is

proved that for such h�
t � �

� �
v v 
 B� 4 Y4 � 4 Y F B ?

(13)

which gives us the desired lower bound

var � � � Y � © CRB � � � Y � 
 B� 4 Y4 � 4 Y F B E
(14)

The diagonal elements of � are not as important, they just

reflect the accuracy of estimating the power of the compo-

nents, or equivalently, the norm of rows of the de-mixing

matrix. The signal-to-interference ratio of the @ F
th compo-

nent can be defined as [9]

SIR � 
 Bª U « ¬ « ®¬ J E � � �� � � E
(15)
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3. TIGHTNESS OF THE BOUND

A CRB is called tight, if there exists an estimator which has

variance equal to the bound. In this section we show that

the CRB can be approached by the FastICA algorithm in

some cases. In particular, the CRB will be compared with

asymptotical variances of the gain matrix elements for this

method, derived in [9].

Let � � � and � � � 	 , respectively, be the gain matrix

obtained by the one-unit and the symmetric variant of the

algorithm using a nonlinear function 
 �  � . It was shown

in [9] that the normalized gain matrix elements � � � � � � �� �
and � � � � � � � 	� �

have asymptotically Gaussian distribution� � � � � � �� � � and
� � � � � � � 	� � � , where� � �� � �  � ! # � �� # � ! % � � � (16)� � � 	� � �  � ! # � � &  � ! # �� & � # � ! % � � �� ' # � ! % � ' & ' # � ! % � ' � � (17)

with
# ( �

E ) * ( 
 � * ( � 0 , % ( �
E ) 
 2 � * ( � 0 ,  ( �

E ) 
 � � * ( � 0 , and
 2 �  � being the first derivative of 
 �  � . It only has to be as-

sumed that the above derivative and expectations exist.

Next, it can be shown that the asymptotic variance in

(16) achieves its minimum for 
 �  � being equal to the score

function of the distribution 7 ( , i.e., for 
 � 9 � � : � 9 � �! 7 2( � 9 � < 7 ( � 9 � . In that case,
# ( � ?

,
% ( �  ( � A ( , and

var ) � � �
B C D E( G 0 I ?� � � �� � � ?� ?A ( ! ? (18)

var ) � � � 	
B C D E( G 0 I ?� � � � 	� � � ?� L ?M & ?N ?A ( ! ? O(19)

where A ( was defined in (5). It can also be shown that for

any distribution 7 ( it holds A ( P ?
and the equality is at-

tained only for the Gaussian distribution.

Comparison of (18) and (19) with (14) implies that the

algorithm FastICA is nearly statistically efficient in two sit-

uations:

(1) One-unit version FastICA with the optimum nonlin-

earity is asymptotically efficient for A ( Q R
, regardless of

the value of A G .

(2) Symmetric FastICA is nearly efficient for A ( lying in

a neighborhood of
? S

, provided that all independent com-

ponents have the same probability distribution function, and
 is equal to the joint score function.

Note, however, than in the latter case, as A ( Q ? S
, the

algorithm asymptotic variance goes to infinity, and the al-

gorithm itself may fail, or its convergence might be slow. It

happens because the task is badly conditioned: it is hard to

separate components with nearly Gaussian distribution.

The performance of FastICA cannot approach the CRB

in the following cases.

(1) Probability density function of the components is not

smooth enough. An example is the uniform distribution.

(2) Probability density function of the components is

smooth, but its score function is not continuous. In that

case, the algorithm appears not to converge. An example is

the generalized Gaussian distribution with parameter T V ?
.

(3) Components have distinct distribution functions.

Analytical performance of alternative ICA estimators is

not known in closed form. The following simulation sec-

tion studies the performance of two computationally exten-

sive algorithms that are claimed to be more accurate than

older algorithms: RADICAL [11] and NPICA [12]. We

have tested implementations available on internet and com-

pared their performance with the CRB as well. Their gen-

eral superiority or tightness was not proven.

3.1. Separation of generalized Gaussian distributions

The generalized Gaussian distribution with the shape pa-

rameter T was introduced for BSS in [10]. For easy refer-

ence, its main properties are listed in Appendix B. Note that

the distribution is Gaussian for T � N
, it is Laplace distri-

bution for T � ?
, it approaches the uniform distribution forT Q R

, and it has long tails for T Q � .

The score function of this distribution is proportional to' 9 ' Y
B

� sign � 9 � . Hence 
 � 9 � � ' 9 ' Y
B

� sign � 9 � is the theoret-

ically optimum nonlinearity for this distribution. This func-

tion is, however, not continuous for T V ?
, and the resulting

algorithm is not convergent in this region. For T P ? ] ^
the

FastICA algorithm with the optimum nonlinearity performs

well and both the one-unit and symmetric versions of the al-

gorithm are nearly efficient. This is shown in Figure 1, giv-

ing the SIR of eq. (15). The simulations are obtained from

50 independent separations of a signal of length � � ? � � �
with ` � b

components, all having the same distribution

function.
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Fig. 1: Comparison of CRB with performance of four ICA

techniques. The SIR or inverse variance is shown.

It is interesting to note that the mean square of the score

function, A ( , is finite for T d ? < N
and infinite otherwise.

It follows that the asymptotic variance of the optimum one-

unit FastICA and the CRB is zero for T V � ] ^
. It is believed
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that the estimation might be possible with the mean square

error decaying faster than
� � � , perhaps as

� � � � .

In the neighborhood of the point � � �
(Gaussian dis-

tribution), the symmetric FastICA with nonlinearity “tanh”

appears to perform best of all the methods.

APPENDIX A: Computing

	 �
�


Definition (11) can be rewritten as

	  � � � � � � �
	

� �� � � � � � , where � � -th element of

	
� , � and

�
are� � � �  " ,

� � " �  � , and
� � � �  " �  � � # � � $ � � � � � " �  � $ � , respec-

tively, for � � � ' � � � * � + and � � � - � � � * � 0
. Note

that

	
� is a rank-one matrix,

	
� � 1 1 3 , where

1 �
vec � 5 � .

Applying the matrix inversion lemma gives	  �
� � �� 7 � � � � �

�
� � � � � � �

�
� 1 1 3 � � � � �

�
�9: 9

�
� ; < � 1 3 � � � � �

�
� 1 >

To compute the inversion � � � � �
�

� note that
�

is diagonal,� �
diag � # � A $ � A C C C A $ �E F G HI

A $ � A # � A $ � A C C C A $ �E F G HI
A C C C � A

and � is a special permutation matrix such that � vec � J � �
vec � J 3 � for any * L * matrix

J
. Moreover, � obeys� � � 5 , and for any diagonal matrix N �

diag � O � it holds

that � N � N Q � A
where N Q �

diag � � O � � � N � . These facts can be used to

show that the inversion of � � �
can be written in the formN � � N � � for suitable diagonal matrices N � and N � . The

equality � � � � � � N � � N � � � � 5is fulfilled for
� N � � N Q � � 5 and N Q � � � N � � V

. HenceN � � � � Q � � 5 �
�

� � Q and N � � � � �
� N Q �where

� Q � � � � and N Q � � � N � � . Finally, it can be

shown that �
	  �

� �
Y Y � �

�
� � N � �

Y Y
for � � � ' � � � * �+ , ' ^� + . (13) easily follows. The detailed proof is in [8].

APPENDIX B: Generalized Gaussian distribution

The generalized Gaussian density function with param-

eter � , zero mean and variance one is defined as_ ` � a � � � c `� e � � � � � g h � � � � c ` i a i � ` � (20)

where � j k is a shape parameter,
e � l � is the Gamma func-

tion and c ` � � � : 
 m ` ;� : � m ` ; .

The � �
th absolute moment for the distribution is

E ` � i a i n � � p  i a i n _ ` � a � * a � �c n` e � n q �` �e � �` � (21)

The score function of the distribution isr ` � a � � � � t � : � ;� �_ ` � a � � i a i `
�

� sign � a �
E ` v i a i ` w (22)

Then, simple computations give$ ` �
E ` v r �` � a � w � �� � � � �

�
y� � � � �� �v � � � q y� � w < for � j � � �� {

otherwise.
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