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ABSTRACT

Channel equalization is an important problem in digital communi-
cations. This contribution studies a hybrid equalization criterion
combining the constant modulus (CM) property and the minimum
mean square error (MMSE) between the equalizer output and the
known pilot sequence. An efficient semi-blind block gradient-
descent algorithm is put forward, in which the step size glob-
ally minimizing the cost function along the search direction is al-
gebraically computed at each iteration. The use of the optimal
step size notably accelerates convergence and can further reduce
the impact of local extrema on the semi-blind algorithm’s perfor-
mance. The proposed approach is not restricted to the CM-MMSE
principle, but it can benefit alternative equalization criteria as well.

1. INTRODUCTION

The equalization of digital communication channels consists of re-
covering the unknown data transmitted through a distorting prop-
agation medium. Blind equalization techniques typically rely on
certain known properties of the input modulation, such as the fi-
nite alphabet or constant modulus (CM) of its data symbols [1].
Although the blind approach is versatile, bandwidth efficient and
especially attractive in broadcast/multicast scenarios, the exploita-
tion of training or pilot sequences (data symbols known by the
receiver) can considerably increase equalization performance and
robustness (e.g., reduce the volume of data required for successful
equalization). From an alternative point of view, the semi-blind
approach can also be interpreted as the regularization of the con-
ventional training-based minimum mean square error (MMSE) re-
ceiver, whose performance degrades for insufficient pilot-sequence
length [2]. The fact that current as well as future communication
systems encompass training sequences in their definition standards
provides another strong motivation for the development of semi-
blind equalization techniques.

The CM criterion is the most widespread blind equalization
principle, probably due its simplicity and flexibility [1]. Indeed,
the CM criterion is easy to implement, and can also tackle non-
CM modulations, at the expense of an increased misadjustment
due to constellation mismatch. As its major shortcoming, the CM
cost function presents local stationary points associated with spuri-
ous non-equalizing solutions. The existence of spurious solutions
degrades the performance of conventional gradient- and Newton-
descent procedures, which is very dependent on the initial value
of the equalizer tap vector [1, 3]. Spurious convergence can be
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alleviated to some extent by taking into account training symbols,
as shown by the semi-blind criterion of [2]. This criterion is com-
posed of a blind part exploiting the CM property of the (unknown)
data symbols and a training part based on the MMSE between the
equalizer output and the pilot sequence.

Another approach to avoiding misconvergence are closed-form
solutions. Both blind and semi-blind CM-based equalization can
be carried out algebraically or in closed form, that is, without it-
erative optimization. The analytical CM algorithm (ACMA) re-
quires a joint diagonalization stage (a costly QZ iteration) in the
general case where multiple solutions exist [4], although its com-
plexity can be relaxed if the solutions are simply delayed versions
of each other [5]. The semi-blind ACMA (SB-ACMA) proposed
in [6] spares the costly joint diagonalization step of its blind coun-
terpart by constraining the spatial filter (beamformer) to lie on cer-
tain subspace associated with the pilot-sequence vector. Never-
theless, the uniqueness of this semi-blind solution remains to be
studied in more detail, and so does its performance in the presence
of noise. Although closed-form solutions are only exact in the
noiseless case, they can always be used as judicious initial points
to iterative optimization criteria.

The present contribution focuses on the semi-blind equaliza-
tion principle of [2]. We propose to minimize this hybrid CM-
MMSE cost function by means of an efficient gradient-descent al-
gorithm whereby the optimal step size is computed algebraically at
each iteration as the rooting of a 3rd-degree polynomial. As shown
in simulations, the use of the optimal step size greatly speeds up
convergence and can further reduce the impact of spurious lo-
cal extrema on the equalization performance, which closely ap-
proaches the MMSE lower bound from just a few pilot symbols.

2. PROBLEM AND SIGNAL MODEL

For simplicity, we deal with the basic single-input single-output
(SISO) channel model. Consider the discrete-time channel output

xn =
∑

k

hksn−k + vn (1)

in which sn represents the transmitted symbols, hk are the chan-
nel impulse-response taps, and vn is the additive noise. The goal
of channel equalization is to recover the original data symbols
from the received signal corrupted by the convolutive channel ef-
fects (intersymbol interference) and noise. To achieve this objec-
tive, a baud-spaced linear equalizer with impulse response taps
f = [f1, . . . , fL]T ∈ C

L is sought so that the equalizer output
yn = fHxn is a close estimate of the source symbols sn, where
xn = [xn, xn−1, . . . , xn−L+1]

T. A similar signal model holds,
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with analogous objectives, if multiple spatially-separated sensors
are available (spatial oversampling), or when several users simul-
taneously transmit, giving rise to additional co-channel interfer-
ence. The results presented in this paper can readily be extended
to multichannel (e.g., MIMO) configurations.

3. SEMI-BLIND CONSTANT MODULUS CRITERION

Practical communication systems typically feature pilot sequences
to aid synchronization and channel equalization. Exploiting this
available information can improve blind equalization performance.
The minimization of the following hybrid cost function constitutes
a semi-blind CM-MMSE criterion:

JSB(f) = λJMMSE(f) + (1 − λ)JCM(f) (2)

where

JMMSE(f) =
1

Nt

Nt−1∑

n=0

∣∣yn − st
n−d

∣∣2 (3)

is the pilot-based MMSE cost function and

JCM(f) =
1

Nb

N−1∑

n=Nt

(|yn|2 − γ
)2

(4)

is the CM cost function. In the above expressions, {st
n} denotes

the training sequence, d represents the equalization delay, γ =
E{|sn|4}/E{|sn|2} is an alphabet-dependent constant, and Nb =
(N − Nt) is the number of equalizer output samples used in the
blind part of the criterion (corresponding to unknown, or ‘blind’,
transmitted symbols). The total number of observed symbol peri-
ods per burst is Nd = (N + L − 1). Parameter λ ∈ [0, 1] can be
considered as the relative degree of confidence between the blind-
and the training-based parts of the criterion. Without loss of gen-
erality, the training sequence is assumed to appear at the beginning
of the transmitted burst.

The above semi-blind cost function (using the “CMA 1-2” cost
instead of the “CMA 2-2”) was first put forward in [2]. The origi-
nal motivation was to overcome the deficiencies of the LS solution
to (3) when the pilot sequence is not long enough, an enhancement
known as regularization. On the other hand, it was also shown that
the incorporation of the pilot sequence is capable of reducing the
probability of convergence to spurious solutions typically arising
from the non-convexity of the CM cost function.

The simple technique presented in the next section further re-
duces the effects of local extrema while notably accelerating con-
vergence.

4. OPTIMAL STEP-SIZE ALGORITHM

Unconstrained optimization of cost function (2) can be performed
via conventional gradient descent by updating the equalizer filter
weights as:

fk+1 = fk − µgk, k = 0, 1, . . . (5)

where gk
def
= ∇JSB(fk) = λ∇JMMSE(fk) + (1 − λ)∇JCM(fk),

and µ is the step size or adaption coefficient. We refer to this itera-
tive method as semi-blind CMA (SB-CMA). A Newton descent is
employed in [2] for the minimization of (2). However, misconver-
gence problems due to the non-convexity of the cost function still
occur in Newton-based minimization [7].

A simple effective alternative is obtained by observing that
JSB(f − µg) is a rational function in the step size parameter µ.
Consequently, it is possible to perform steepest descent of function
(2) by finding the optimal step size µopt = arg min

µ
JSB(f − µg)

among the roots of a polynomial in µ. In effect, the derivative of
JSB(f − µg) with respect to µ is the 3rd-degree polynomial

p(µ) = λpMMSE(µ) + (1 − λ)pCM(µ) (6)

where pMMSE(µ) = α1µ + α0, with

α1 =
1

Nt

Nt−1∑

n=0

|gn|2 (7)

α0 = − 1

Nt

Nt−1∑

n=0

IRe{g∗
n(yn − st

n)} (8)

gn = gHxn, and pCM(µ) = β3µ
3 + β2µ

2 + β1µ + β0, with

β3 =
2

Nb

N−1∑

n=Nt

a2
n, β2 =

3

Nb

N−1∑

n=Nt

anbn

β1 =
1

Nb

N−1∑

n=Nt

(2ancn + b2
n), β0 =

1

Nb

N−1∑

n=Nt

bncn (9)

an = |gn|2, bn = −2IRe(yng∗
n), cn = (|yn|2 − γ). Gradient

vector g should be normalized beforehand in order to improve nu-
merical conditioning. The roots of this polynomial can be found
through standard non-iterative analytical procedures such as Car-
dano’s formula, or efficient iterative methods [8]. The optimal step
size corresponds to the root attaining the absolute minimum in µ
of the cost function, thus accomplishing the global minimization
of JSB in the gradient direction. Once µopt has been determined,
the filter taps are updated as in (5), and the process is repeated
with the new filter and gradient vectors, until convergence. We
refer to this algorithm as optimal step-size semi-blind CMA (OS-
SB-CMA). For λ = 1 the above iterative procedure reduces to the
optimal step-size version of the well-known least mean squares
(LMS) algorithm for supervised MMSE equalization.

The computational cost of the above sample averages is of or-
der O(LN) per iteration, for data blocks composed of N sensor
vectors xn. Alternatively, the coefficients of the step-size polyno-
mial can be obtained as a function of the sensor-output statistics,
computed once before starting the algorithm (along the lines of
[9]; details are omitted here due to space limitations). The cost per
iteration of this alternative procedure is of order O(L4), with an
additional burden of O(L4N) operations due to the computation
of the sensor-output 4th-order moments.

5. EXPERIMENTAL RESULTS

A zero-mean unit-variance QPSK-modulated input excites the
order-6 non-minimum phase FIR channel H2(z) of [5, Sec. V],
whose output is corrupted by additive white complex circular Gaus-
sian noise. An FIR filter with length L = 5 is used to equalize the
channel, aiming at the optimal MMSE delay (dopt = 6 at 20-dB
SNR). Bursts of length Nd = 100 symbols are observed at the
channel output, yielding a total of N = 96 sensor-output vec-
tors. Equalization quality is measured in terms of the symbol error
rate (SER), which is estimated by averaging over 500 independent
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bursts. The first experiment compares several fully-blind methods
(Nt = 0, Nb = N ). The closed-form solution of [5, Sec. II-B] is
referred to as ‘DK-top’. Iterative solutions are obtained from the
constant gradient-descent CMA with three different initializations:
first-tap filter, center-tap filter and the DK-top solution. As a ref-
erence, a conventional receiver is simulated by computing the LS
solution to the MMSE criterion assuming that 10% of the trans-
mitted symbols are available for training. Accordingly, we refer to
the LS solution with the whole burst used for training as ‘MMSE
bound’. Fig. 1 shows that the closed-form solution is only useful as
an initial point to the blind iterative receiver, whose performance
depends on the actual initialization.

In the same scenario, the performance of the SB-CMA crite-
rion (2) with constant step size is summarized in Fig. 2. The SB-
ACMA closed-form solution [6] is also considered, whereas semi-
blind operation of the DK-top solution (SB-DK-top) is enabled
by the SVD-based procedure described in [10, 11]. Even though
the inclusion of training information enhances DK-top relative to
the blind case (Fig. 1), SB-ACMA proves superior, and outper-
forms the conventional receiver for sufficient SNR. Nevertheless,
SB-ACMA can be further improved if used as a starting point for
the iterative SB-CMA, whose performance becomes nearly inde-
pendent of initialization at low to moderate SNR. A flooring ef-
fect is observed at high SNR values. As observed in Fig. 4, the
number of iterations for convergence increases compared to the
blind scenario. This increase is probably due to the flattening of
the CM cost function when training is incorporated. A similar ef-
fect in semi-blind operation (although for a different equalization
criterion) is remarked in [12]. By contrast, Figs. 3–4 show that
the performance of the OS-SB-CMA is virtually independent of
initialization, while dramatically reducing the iteration count by
about two orders of magnitude. Also, the flooring effect at high
SNR observed in the constant step-size SB-CMA now disappears.

A second experiment (Figs. 5–6) evaluates the performance
variation as a function of the percentage of symbols in the transmit-
ted burst used for training, calculated as Nt/N × 100%. The OS-
CMA using only the ‘blind’ symbols is also tested for two differ-
ent initializations. The SB-ACMA closed-form solution only im-
proves the conventional receiver for short pilot sequences, and al-
ways benefits from gradient-descent iterations. The OS-SB-CMA
slightly improves the SB-CMA for short training and for all initial-
izations (‘×’: first tap; ‘+’: center tap; ‘∆’: SB-DK-top; ‘�’: SB-
ACMA), while maintaining its computational superiority across
the whole training-length range. For reasonable pilot-length val-
ues, the semi-blind methods are able to attain the conventional
MMSE receiver performance while increasing the spectral effi-
ciency (decreasing the pilot length), thus improving the effective
data rate. Properly initialized, fully-blind operation outperforms
the semi-blind methods in short training, as if using too few pilot
symbols could ‘confuse’ the blind receiver; a similar effect is ob-
served for sufficient training, where the ‘blind’ symbols seem to di-
vert the conventional receiver from its satisfactory solution. How-
ever, the performance of the OS-CMA in this scenario depends on
initialization, although the optimal step-size approach endows the
fully-blind CMA with some immunity to local extrema [9].

6. CONCLUSIONS

The semi-blind equalization criterion of [2] can be globally min-
imized along any given search direction. This contribution has
presented the closed-form expression for the polynomial allowing

the derivation of the optimal value of the step size. Experimental
results demonstrate that this simple procedure remarkably accel-
erates convergence and can further reduce the negative impact of
local extrema on the algorithm’s performance. The optimal step-
size strategy is not exclusive to the CM-MMSE principle but can
also be incorporated to alternative equalization criteria with a ratio-
nal cost function or which may be well approximated by a rational
function in the adaption coefficient [7, 12].

Further work includes the comparison with alternative step-
size optimality and acceleration approaches [13, 14], and the de-
termination of the optimum value of confidence parameter λ.
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Fig. 1. Blind equalization performance. Solid lines: constant step-
size gradient-descent CMA with different initializations.
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Fig. 2. Semi-blind equalization performance. Solid lines: constant
step-size SB-CMA with different initializations.
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Fig. 3. Semi-blind equalization performance. Solid lines: OS-SB-
CMA with different initializations.
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Fig. 4. Number of iterations for convergence of the iterative meth-
ods in the simulations of Figs. 1–3.
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Fig. 5. Equalization performance for a varying number of pilot
symbols in the transmitted burst.
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Fig. 6. Number of iterations for convergence of the iterative meth-
ods in the simulation of Fig. 5.
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