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ABSTRACT
This paper deals with blind source separation by contrast function
maximization. A general class of separation criteria valid for both
i.i.d. and non i.i.d. sources is exhibited: it is based on third or
higher order cross-cumulants between the separator outputs and
fixed signals, called references. We show that this approach is ap-
plicable not only in a semi-blind context, but also in a completely
blind scenario. The most interesting feature concerning our criteria
is their quadratic form. It follows a highly simplified optimization
procedure which is described in the paper. Simulation results illus-
trate the validity of our approach, and the appeal of this new class
of contrast functions.

1. INTRODUCTION

We consider the blind equalization problem of multichannel Linear
and Time Invariant (LTI) systems. This problem is also referred to
as blind source separation (BSS) and occurs in many applications,
in particular in multi-user digital communications. Solutions to
this issue have been proposed in several works. The main explored
directions include frequency point of views [1], global approaches
[2, 3] which recover all the sources simultaneously, and iterative
methods [4] which extract the sources one by one. This paper
deals with the latter case, and more precisely with solutions which
are based on the maximization of a criterion called contrast func-
tion. Such contrasts have been proposed for both i.i.d. [5] and non
i.i.d. [6] source signals. Unfortunately, as they involve higher or-
der statistics, their optimization appears to be computer intensive.

Recently, contrast functions have been generalized through the
use of so-called reference signals. The first contributions have re-
stricted themselves to the case of instantaneous source mixtures,
[7, 8] while results concerning convolutive mixtures have been pre-
sented more recently [9]. Because of their optimization simplicity,
these approaches are extremely appealing.

In this paper, our goal is to develop new quadratic contrast
function for convolutive models. In particular we extend results in
[9] to cumulants of any order greater than or equal to three. The
validity of our contrast functions is established under general con-
ditions, which brings more flexibility (possibility to choose freely
some “reference” signals, to use complex conjugate or not). The
usefulness of such a wide family of criteria is illustrated by com-
puter simulations, where third order cumulants are shown to per-
form better for some classes of sources. In addition, it is proved
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both theoretically and by simulations that our criteria can be used
in a completely blind context which constitutes an extension of our
earlier results in [9].

2. MODEL AND PROBLEM FORMULATION

We consider a Q-dimensional (Q ∈ N, Q ≥ 2) discrete-time sig-
nal, which is observed. It is denoted by the column vector x(n),
where in the whole paper, n stands for any integer (n ∈ Z).
The observation x(n) results from a LTI multichannel system de-
scribed by the input-output relation:

x(n) =
X

k∈Z

M(k)s(n − k). (1)

M(n) represents a sequence of (Q, N) matrices which corresponds
to the impulse response of the LTI mixing system and s(n) is an
N -dimensional (N ∈ N

∗) unknown and unobserved column vec-
tor, which is referred to as the vector of sources. All quantities
may be either real or complex-valued.

As our approach is an iterative one, we will focus on the ex-
traction of a single source. Hence, using only the observations
x(n), the considered problem consists in estimating a (1, Q) LTI
vector filter, called equalizer and with impulse response w(n),
such that the scalar signal

y(n) =
X

k∈Z

w(k)x(n − k) (2)

restores one of the components si(n), i ∈ {1, . . . , N} of the source
vector. More precisely, defining the (1, N) global LTI vector filter
g(n) by the following impulse response:

g(n) =
X

k∈Z

w(k)M(n − k) , (3)

we have

y(n) =
X

k∈Z

g(n − k)s(k) � {g}s(n) . (4)

We say that the equalization is achieved when there exists an in-
dex i0 ∈ {1, . . . , N} and a non-zero scalar filter with impulse
response g(n), such that the filter components in g(n) read

gi(n) � (g(n))i = αg(n)δi−i0 , (5)
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where α ∈ C
∗ and δk stands for the Kronecker symbol, i.e. δk = 1

if k = 0 and 0 otherwise. The above relation is called the “equal-
ization condition” and expresses the fact that y(n) corresponds to
the source si0(n) up to a scalar filtering.

Notice that the above equalization criterion can be made more
restrictive when the source signals are also assumed to be indepen-
dent sequences of i.i.d. (independent and identically distributed)
complex random variables. Indeed, in such a case, it is classically
said that the equalization is realized when the scalar filter g(n)
reduces to a delay, which reads:

∃l ∈ Z gi(n) � (g(n))i = αδn−lδi−i0 . (6)

In order to be able to solve the BSS problem, we need to in-
troduce some assumptions on the source signal. The following
classical assumption is made, which is known to play a key role in
these problems:

A.1 The source vector components si(n), i ∈ {1, . . . , N} are
mutually independent, stationary and zero-mean processes with
unit variance. Their respective covariance function are positive
definite functions denoted by γi(k), k ∈ Z for all i ∈ {1, . . . , N}.

Since the sources have unit variance, one can restrict the multi-
plicative factor in (5) and (6) to |α| = 1 by imposing the con-
straint E{|y(n)|2} = 1. Equivalently, defining the norm of the
global (1, N) filter by

‖g‖2 �
NX

i=1

X

(k1,k2)∈Z2

gi(k1)g
∗
i (k2)γi(k2 − k1) (7)

we can work within the set of unit-norm global filters (‖g‖ =
1). Note that for independent identically distributed sources, this
condition reads:

PN
i=1

P
k∈Z

|gi(k)|2 = 1.

3. MISO SEPARATION CRITERIA

3.1. Background

The concept of contrast function has been introduced in BSS so
as to reduce the problem to an optimization one: by definition, a
contrast function is a criterion which is maximum only if the equal-
ization condition (5) (or (6) if the sources are i.i.d.) is satisfied.

Denoting by C4{.} the fourth-order auto-cumulant of a ran-
dom variable, it is known that the criterion |C4{y(n)}| constitutes
a contrast function in the case of both i.i.d. sources [5] and non
i.i.d. sources [6]. Unfortunately, the optimization of the latter cri-
terion requires an iterative gradient-like procedure which makes it
computationally intensive.

3.2. A family of contrast functions

The first contribution of the paper consists in using criteria based
on R-th order (R ≥ 3) cross-cumulants, where R−2 variables are
fixed. This choice yields a quadratic dependence with respect to
the optimized parameter, which greatly simplifies the optimization
task. More precisely, to give a general expression, we introduce
the notation y(n) to designate either y(n) or its complex conju-
gate y∗(n). We then define the following R-th order (R ≥ 3)
cumulant:

κR,z{y(n)} = Cum{y(n), y(n), z1(n), . . . , zR−2(n)} (8)

where zi(n), i ∈ {1, . . . , R − 2} are given signals. In our previ-
ous work [9], they have been referred to as reference signals de-
termined from prior information, but we will prove that they may
be chosen in a rather arbitrary way. We now define the following
criterion:

CR,z{y(n)} � |κR,z{y(n)}| , R ≥ 3 (9)

For the sake of clarity, we will focus on i.i.d. source signals al-
though the proofs can be extended to the non i.i.d. case. We need
to define the following supremum, where sj(n − k) is conjugated
in the same way as y(n) in (8) and (9):

κmax
R =

N
max
j=1

sup
k∈Z

|κR,z{sj(n − k)}| (10)

The proof of Proposition 1 requires the following assumption, which
will appear to be fulfilled subsequently:

A.2 There exists (j0, l0) such that:

κmax
R = |κR,z{sj0(n − l0)}| < +∞ (11)

We can then state:

Proposition 1 In the case of i.i.d. source signals, the criterion
CR,z is a contrast under unit norm constraint (‖g‖ = 1) if and
only if the set

I � {(j, k) ∈ {1, . . . , N} × Z | |κR,z{sj(n − k)}| = κmax
R }

(12)
contains a single element.

Proof: For the sake of clarity, we will give the proof only for the
criterion CR,z{y(n)} derived from (8) where y(n) = y(n). It can
be easily adapted to other cases. We can then write:

κR,z{y(n)} =

NX

j=1

X

k∈Z

gj(k)2κR,z{sj(n − k)} (13)

and, using (10) and the unit-norm property of g(n), it follows

CR,z{y(n)} ≤
NX

j=1

X

k∈Z

|gj(k)|2|κR{sj(n − k)}| (14)

≤ κmax
R

NX

j=1

X

k∈Z

|gj(k)|2 = κmax
R . (15)

If the above upper-bound is reached (which is possible according
to assumption A.2), then

NX

j=1

X

k∈Z

|gj(k)|2 ą
κmax

R − |κR,z{sj(n − k)}| ć = 0 (16)

All terms in the above sum being positive, if I contains a single
element, one deduces, that the global Multi-Input / Single-Output
filter {g} satisfies the equalization condition (6).

Conversely, one can see that if I contains several elements,
there exist non separating filters which maximize CR,z . �
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3.3. Blind choice of zi(n)

We have not specified so far how to choose the signals zi(n). The
simplest way consists in assuming that each signal is obtained by
a MISO finite impulse response (FIR) filtering of the sources:

∀i ∈ {1, . . . , R − 2} zi(n) =
X

k∈Z

t(i)(n − k)s(k) . (17)

where for all i, t(i)(n) is the impulse response of a (1, Q) FIR
(hence stable) vector filter. It follows from the stability of the filters
{ti}, i ∈ {1, . . . , R − 2} that assumption A.2 is satisfied. The
following proposition ensures that zi(n), i ∈ {1, . . . , R − 2} can
be chosen blindly, contrary to what has been done in [9]:

Proposition 2 If the coefficients of the filters {ti}, 1 ≤ i ≤ R−2
have been chosen randomly distributed according to a continuous
joint probability density function (supported on a set of non-zero
measure), then almost surely the set I has one single element and
CR,z is a contrast.

Proof: Using cumulant multilinearity and source independence,
one obtains (for any given j in {1, . . . , N}):

|κR,z{sj(n − k)}| = |CR{sj(n)}
R−2Y

i=1

t
(i)
j (k)| (18)

where t
(i)
j (k) is the j-th component of t(i)(k).

Denote by (j0, l0) a couple of indices satisfying (11). From
(18), one can see that for any (j, k) �= (j0, l0), we have (j, k) ∈ I
if and only if

|CR{sj(n)}
R−2Y

i=1

t
(i)
j (k)| = |CR{sj0(n)}

R−2Y

i=1

t
(i)
j0

(l0)| , (19)

which is almost surely false if the coefficients are driven from a
continuous joint probability density function. �

Notice that in order to satisfy the assumption of Proposition 1,
we must have κmax

R > 0. This implies a necessary assumption
on the sources, which we assume to be satisfied throughout the
paper:

A.3 There exists j ∈ {1, . . . , N} such that the R-th order auto-
cumulant of the j-th source is non zero, that is: CR{sj(n)} �= 0

4. OPTIMIZATION METHOD

We now give some details concerning the optimization of the pro-
posed contrast. We will assume from now on that the mixing filter
admits a MIMO-FIR left inverse filter of length D, which can be
assumed to be causal because of the delay ambiguity. The row
vectors which define the impulse response can be stacked in the
following (1, QD) row vector:

w �
ą
w(0) . . . w(D − 1))

ć
(20)

Defining also the (QD, 1) column vector

x(n) �
ą
x(n)T x(n − 1)T . . . x(n − D + 1)T

ć T
(21)

and the covariance matrix R = E{x(n)x(n)T } we can write
y(n) = wx(n) and hence E{|y(n)|2} = wRwH . Finally, using
cumulant multilinearity, one can easily define a matrix C such that

κR,z{y(n)} = wCwH . The source separation task then amounts
to the optimization problem:

max |wCwH | under the constraint: wRwH = 1 (22)

Now, for any row vector such that wH
0 ∈ kerR we have

w0RwH
0 = E{w0x(n)x(n)HwH

0 } = 0 and hence the signal
w0x(n) vanishes identically. It follows that we may impose in ad-
dition wH ∈ (kerR)⊥ to the optimization problem given by (22).
By projection onto the subspace, one finally reduces the problem
to the following one:

max |x̃HC̃x̃| under the constraint: x̃H x̃ = 1 (23)

which solution is known to be given by the singular vector of C̃
corresponding to singular value with greatest modulus. Hence a
SVD decomposition allows us to obtain the exact solution to the
optimization problem.

5. SIMULATION RESULTS

Computer simulations are now presented to illustrate the useful-
ness of the above derivations. Two different types of real-valued
source signals have been considered. The first one corresponds to
i.i.d. signals taking their values in the set {− 3√

5
,− 1√

5
, 1√

5
, 3√

5
}

with equal probabilities also known as PAM-4 and the second one
to i.i.d. signals taking their values in the set {−1, 0, α}with the re-
spective probabilities { 1

1+α
, α−1

α
, 1

α(1+α)
} called MS(α) [10]. In

the latter case, the parameter α is such that α ≥ 1 and it provides
an easy way to parametrize the values of higher order cumulants.

In all experiments, we have taken N = 3 source signals,
which have been mixed using a (4, 3) FIR matrix filter of length 3.
Hence the number of observed signals is Q = 4. The mixing filter
coefficients have systematically been randomly chosen according
to a normal distribution.

The reference signals zi(n), i ∈ {1, . . . , R− 2} have all been
chosen equal: ∀i, zi(n) = z(n), where z(n) is the output of a
(1, Q) FIR row filter of length 3 operating on the observed signals.
The coefficients of this filter have also been chosen randomly using
a normal distribution.

Based on the result of Proposition 1, one can estimate a first
source signal y(n) based on the former choice (∀i, zi(n) = z(n))
and the method described in Section 4. One can then set ∀i, zi(n) =
y(n) and repeat the same procedure. When this procedure is re-
peated iteratively, the iteration number is denoted by Ni.

In all cases, the mean square estimation errors (MSE) of the
sources have been evaluated over 100 Monte-Carlo runs. In each
run, the source signals, the mixing system and the initial reference
system have been randomly chosen.
Experiment 1: About iteration number

For PAM-4 source signals, we have estimated the average MSE
versus the iteration number Ni. Notice that when Ni = 1, only
one randomly (hence blindly) chosen reference system is involved.
In this experiment, a fourth order cumulant contrast has been con-
sidered with a number of samples set successively to K1 = 10000
and K2 = 50000. The results are reported in the table below.

Ni 1 2 3 4 5
K1 0.168 0.0046 3 10−4 2.6 10−4 2.6 10−4

K2 0.04 1.42 10−4 5.64 10−5 5.62 10−5 5.62 10−5

One can remark that even when Ni = 1, good estimation per-
formance is obtained when the number of samples is large enough.
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A more careful study has illustrated that with fewer samples, un-
satisfactory results are due to estimation errors. In this case, a few
iterations are required to obtain a good and constant performance
level.
Experiment 2: About data number

For MS(α) source signals, with α = 3 and α = 1 +
√

2,
we have plotted in Figure 1 the average MSE versus number of
samples. We have used Ni = 3 iterations. Note that the respec-
tive values of third and fourth order cumulants are C3{s(n)} = 2

C4{s(n)} = 4 for α = 3 and C3{s(n)} = C4{s(n)} =
√

2 for
α = 1 +

√
2. We have compared the performance obtained when

using a third order cumulant contrast and a fourth order cumu-
lant one. Better estimation performance has been obtained using
a third order cumulant contrast. Hence one can take advantage of
the skewness of the source probability density function by using a
third order cumulant contrast.
Experiment 3: MIMO case

Resorting to a deflation procedure [4], we have considered the
estimation of 3 sources. The average MSE for the three estimated
sources (denoted respectively by s1, s2 and s3 hereafter) versus
the number of samples K is reported in the following table.

K 5000 10000 25000 50000
s1 0.0008 0.0003 0.0001 0.0659 10−3

s2 0.0050 0.0021 0.0010 0.4209 10−3

s3 0.0064 0.0033 0.0018 0.6277 10−3

As classically observed the estimation performance is better for
the first estimated source signal.
Experiment 4: Complex signals

In this last experiment, we have considered the case of com-
plex QAM-4 source signals. Using K = 3000 samples, we have
plotted in Figure 2 one observed signals in the complex plane and
one estimated source signals using an iteration number Ni = 3.
One can notice that our method provides good results in the recov-
ery of complex-valued communication signals. This has also been
confirmed by a Monte Carlo study.
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Fig. 1. For MS(α), average MSE versus number of samples con-
sidering contrasts based on third and fourth order cumulants.
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