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ABSTRACT

In this paper, we present new approaches to blind channel esti-
mation and equalization based on Second Order Statistics (SOS).
We first consider the case of minimum phase channels where the
equalizer is designed based on the criterion of autocorrelation match-
ing. We cast the problem as a convex optimization program that
can be efficiently solved using interior point methods. Then we
consider the equalization of single-input multiple-output SIMO
channels. Due to oversampling, the equivalent channel matrix
possesses a particular structure which enables us to estimate the
channel based only on the information contained in the covariance
matrix at zero delay. Simulation examples are provided to demon-
strate the performance advantage of the proposed algorithms com-
pared to existing techniques.

1. INTRODUCTION

Blind channel estimation and equalization plays a key rule in mod-
ern communication systems. It is employed in systems where
an unknown signal is transmitted through an unknown multipath
channel. Although training-sequence based equalization is simple
and exhibits fast convergence, it suffers from the trade off between
the sequence length and the capacity of the link. On the other
hand, Higher Order Statistics HOS can be effectively utilized to
estimate/equalize the channel, yet they require a large channel out-
put data record. Therefore, for time-varying channels this method
can fail to estimate/equalize the channel.

Recent work has been directed towards the use of second-order
statistics as it requires less data samples and is computationally
less expensive than HOS. The algorithm presented in [1] is one
of the first second order statistical methods exploiting the multi-
ple channel nature of fractionally sampled channel outputs. The
methods presented in [1], [2] and [4] rely on the noise and sig-
nal subspaces separation which requires prior knowledge on the
channel order. The methods presented in [3] and [5] overcome
this difficulty. However, these methods utilize multiple covariance
matrices computed at different delays which may result in error
accumulation.

In this paper we first present a convex optimization formula-
tion to estimate the equalizer coefficients in the case of minimum
phase channel where the variable of interest in the formulation is
the autocorrelation sequence of the equalizer. After solving the
optimization problem the equalizer can be obtained by applying
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the spectral factorization technique. In addition, we present two
methods for SIMO channel equalization. Unlike [1] and [2], our
proposed methods are less sensitive to the over estimation of the
channel order and are computationally less expensive than [3] and
[5]. Our methods make use of the channel matrix structure and
require only one covariance matrix in estimation. Moreover, the
proposed methods are robust when the channel matrix approaches
singularity. As a by-product, we will show that, the covariance ma-
trix at different delays can be obtained directly from the covariance
matrix at delay zero.

2. PROBLEM FORMULATION

In a linear time invariant system, the received signal is given by,

x � � � � �
� 	 � 
 � � � �  � � � � � � �

(1)

where 	 � is transmitted data sequence,


is the symbol baud du-
ration, 
 � � �

is the channel impulse response, and
� � � �

is an addi-
tive white noise independent of the input sequence. In the frac-
tionally spaced scenario the received signal is sampled � times
its original baud rate. The resulting � -th subchannel 
 � � � � �


 � �  � � � � � � � �
, � � � � � � � � � and

� �  � � , is modelled as an
FIR filter of order � . The fractionally spaced system is shown in
Fig. 1.

Fig. 1. Multichannel model

The � � �
received vector x � � �

can be expressed as,

x � � � � �
� 	 � h � � � � � �

n � � � �
(2)

where h � � � � � 
 � � � � � � � 
 � � � � �  
and n � � � � � � � � � � � � � � � � � � � � �  

is the oversampled noise vector. Collecting ! received vectors
(where ! is the length of each subequalizer) the model can be
expressed in a matrix form as follows,

x � � � �
Hs � � � �

n � � � �
(3)
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where x � � � � �
x � � � � � � � � �

x � � � 	 
 � � � � �
is  	 � �

received
vector, s � � � � �

� � � � � � �
� � � � � � � � � �

is � 	 
 � � � �
transmitted

data sequence of (i.i.d) zero mean symbols with covariance matrix� �
s � � �

s � � � � � �
I 	 , n � � � � �

n � � � � � � � � �
n � � � 	 
 � � � � �

is  	 � �
white Gaussian noise with zero mean and covariance

matrix,
� �

n � � �
n � � � � � � 
 �

I � , and H is  	 � � 	 
 � �
Toeplitz

channel matrix,

H
�


��

h � � � � � �
h � � � � � � �

...
. . .

. . .
...� � � �

h � � � � � �
h � � �

�
�� �

The condition for identifying the channel matrix H was given in
[1], [2], [3] and [4] that is the channel matrix H should be full
column rank or equivalently, the subchannels � � have no common
zeros. In the following we will assume that H meets this condition.

3. MINIMUM PHASE CHANNEL EQUALIZER

In this section, we propose an approach to minimum phase chan-
nels equalization (T-spaced equalizer). The assumption that the
transmitted signal is white will lead to a convex optimization for-
mulation in the autocorrelation sequence of the equalizer. The
equalizer output is,

y � � � � � � g � � � � �
x � � � �

(4)

where g � � �
is the equalizer. The output autocorrelation sequence

can be expressed as follows,

r � � � � � � �
y � � � �

y � � 
 � � � �
� � � � � g � � � � � �

x � � � � � � g � � 
 � � � �
x � � � � �

� �
� r � � � � � �

r � � � � �

or simply r � �
R � r � , where r � and r � are the autocorrelation se-

quences of the received signal and the equalizer respectively and
R � is a Toeplitz convolution matrix constructed from r � . Ideally
r � � � � � � � � � � � � � � � � �

which leads to the
� � -norm equalizer de-

sign criterion as follows,

�  !
r " r

�� # �� # � r � s.t a
�� r � � � �

r � � $ � % � & � ' ( �

where a
�� is the

�
-th row of R � and the output autocorrelation

length is ) � � �
. This results in a semi-definite programming

SDP (using Schur complement) with linear equality and inequality
constraints over the variable r � ,

�  !
r " * + �

s.t a
�� r � � � �

r � � $ � % � & � ' ( � , �
r

��
r � � R �� R � � � � - . � �

A popular method of handling the infinite linear constraints
r � � $ � % � & �

is through discretization on a finite grid of length/
covering the interval

� � � 0 �
. The problem can be solved effi-

ciently using the interior point methods to obtain r � , which can be
spectrally factorized to obtain the equalizer g � � �

.

4. FRACTIONALLY SPACED EQUALIZER

4.1. Blind Equalizer

Consider the equalizers bank shown in Fig. 1 where g
�� � � � � � � � � � 

is the
�
-th subequalizer of order 	 � �

at delay � . The estimated
symbol at delay � is,1

� � � 2
g �� x � � � � � 3 � 3 	 
 � � � �

(5)

where
2
g � � 4 5 6 � �

g
� � � � � � �

g
�� � � �

and ‘
4 5 6 ’ denotes the vector oper-

ator. Considering all the available delays, the equalization matrix
can be written as

2
G

� � 2
g 7 � � � � � 2

g � � � � � � �
. For minimum mean

square equalizer MMSE the equalization matrix is given by,2
G

� 8 9 : �  !
G

� � ; ;
G x � � � � 1

s � � � ; ; � � �
�

H � R <7 �
(6)

where
1
s � � �

is the estimated sequence and ‘ = ’ denotes the pseudo
inverse. Since R 7 can be estimated from the received signal, it
remains to estimate the columns of the channel matrix H corre-
sponding to the equalizer at different delays.

4.2. Covariance Matrix

The covariance matrix R 7 of the received vector x and its eigen-
value decomposition are given by,

R 7 � � �
x � � �

x � � � � � �
HH � 
 
 �

I �
� �

U � U � � , > 
 
 �
I 0

0

 �

I
- , U � �

U �� - �
(7)

where the transmitted data and noise are assumed to be white, in-
dependent of each other and with zero mean. The channel ma-
trix H can be obtained up to an unknown orthonormal matrix V �
(where V is the � 	 
 � � � � 	 
 � �

right singular matrix of H),

HH � �
U � > U � � �

H
�

AV � �
(8)

where A
�

U � > ?@ and V � � �
v � � � � � �

v � � � �
. The key step

in the algorithm is to find v � and then apply a recursive method
to estimate the

�
-th vector v� from which we can obtain the

�
-th

column of the channel matrix that contains all the channel coeffi-
cients. Note that, it is not necessary to estimate the equalizer at all
the � 	 
 � �

delays. However, estimating a channel column vector
that has all the channel coefficients results in a performance that is
close to the best delay equalizer.

4.3. Channel Estimation

4.3.1. Method A

We define a matrix H � of size  � 	 � � � � � 	 
 � �
, containing

the last  � 	 � � �
rows of the original matrix H with the following

structure,

H � �

��

�
h � � � � � �

h � � � � � � �
...

. . .
. . .

...�
h � � � � � �

h � � �

�
�� �

Since H is a full column rank matrix with 9 8 ! A � H � � 	 
 �
then it is clear that 9 8 ! A � H � � � 	 
 � � �

where the first zero
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column in H � induces the rank deficiency. Partitioning H into two
sub-matrices

�
H � and H � , (8) can be written as,

� �
H �
H � � � � �

A �
A � � V � �

(9)

and it follows that,
H � �

A � V � �
(10)

Since V � is a full rank matrix then, � � � � � A � � � � � � 	 

.

Comparing the first column in both sides of (10) we get,

A � v � �
0

�
(11)

Since A � � A � has only one zero eigenvalue, and v � is a unit norm
vector then, v � is the solution to the following problem,

� 	 �
v 
 v � � A � � A � v � s.t. � v � � � 
 �

(12)

Therefore, v � is the eigenvector corresponding to the unique zero
eigenvalue of A � � A � . To find the

�
-th column vector of V � (

� �


), we define a matrix H� of size � � � 	 � � � � � � � �

that has
the last � � � 	 � �

rows of the channel matrix H with the condition
� � � � � � � � � 	 � �

. This condition is necessary to ensure that
H� is a tall matrix and the rank deficiency arises from the first

�
zero columns. Following the same steps and considering the last

� � � 	 � �
rows of the channel matrix H we obtain,

H� �
A� V � �

(13)

where � � � � � A� � � � � � 	 �
and the matrix A �� A� has

�
zero

eigenvalues. Comparing the
�
-th column in each side we obtain,

A� v� �
0 and consequently,

v �� A �� A� v� �
0

�
(14)

Since the null space � � A �� A� �
has dimension

�
then v� can not

be obtained directly from (14). Let � � A �� A� � � � � �  � � U� � �
� � � � � u � �    �

u� �
. Since v� is a linear combination of these vec-

tors, it can be expressed as,

v� �
U� a

�
(15)

where a
� � � � �    � � � � �

and � a � � 

. This condition is neces-

sary for v� to be a unit norm. Moreover, v� should belong to the
null space of the matrix W� whose columns are the first � � 	 
 �

-th
columns of V � defined as, W� � �

v � �    �
v� � � �

. So we have,

W �� v� �
W � U� a

�
Ba

�
0

�
(16)

Note that the matrix B is
� 	 
 � �

full row rank matrix. Therefore,
a is the eigenvector corresponding to the unique zero eigenvalue
of B � B. Substituting the vector a in (15) we obtain v� . Starting
from v � and applying this recursive algorithm we can obtain the
first

�
columns of V � . The advantage of method-A is evident in

the estimation of v� where it is obtained as the intersection between
two sets � � W� �

(orthogonal to previous v � , � � �
) and � � A �� A� �

(due to the channel matrix structure). Therefore, making use of the
orthogonality property and the channel structure leads to a better
estimation than [1], [2], [3] and [4].

4.3.2. Method B

In this method the equalizer is estimated using only the vector v �
obtained in the previous section and the covariance matrix at delay� � � . We will show that this covariance matrix can be obtained
directly from the covariance matrix at delay zero. The covariance
matrix at delay

� � � is given as,

R � � � �
x � � �

x � � � � � � � �
HJ

�� H � � � �
J

�� �
(17)

where J � is � � � � � � � � � � �
and J � is � � � � � Jordan matri-

ces (matrix with ones in the subdiagonal below the main diagonal).
Substituting the channel matrix (8) we obtain,

R � 	 � �
J

�� �
HJ

�� H � �
U � � 
� V � J

�� V � 
� U � � �

Multiplying by � � 
� U � � and its hermitian transpose from left and
right respectively we get,

� � 
� U � � � R � 	 � �
J

�� �
U � � � 
� �

V � J
�� V �

(18)

Define a new matrix C � associated with the delay
� � � as follows,

C � �
V � J

�� V �
(19)

Multiplying C � by V and V � from right and left respectively,

VC � V � �
J

�� � � 	 
 � � �  � 
 	� � �  � 
 	 � �

By equating the � � � 
 � 
 �
entry in both sides we obtain v �� � � C � v � �



, and hence,

v � � � �
C � v � �

(20)

We can directly obtain R � from R � in a recursive method. Divide
the covariance matrix at delay

�
as R� � �

Z P Q
�
where Z is

� � � � , P is � � � � � � 	 � �
and Q is � � � � . Using the

channel matrix structure, the covariance matrix at delay
� � 


can
be obtained from the following relation,

R� � � � � �
R � � � �

P Q J
�
Q

� �
(21)

where
�

is an operator acting on the sub matrices Z
�
P

�
Q. To illus-

trate this operation, by using the channel structure it can be shown
that HJ � H � � � �

HH � �
. The algorithm is less sensitive to the

over-estimation of the channel order. furthermore, it avoids the er-
ror propagation associated with the recursive channel estimation
in [1], as well as the error accumulation due to the multiplication
of estimated covariance matrices computed at different delays [3]
and [5]. Obviously, the computational complexity in method-B is
substantially less than method-A.

5. SIMULATION RESULTS

In this section four examples are presented to evaluate the per-
formance of the proposed algorithms. The covariance matrix is
estimated using 1000 samples.

In the first example, we consider the transmission of BPSK se-
quence. The channel impulse response is shown in Fig. 2(a) (mini-
mum phase channel). The received autocorrelation sequence is es-
timated over 1000 symbols and the equalizer length � � � 
 �

. The
combined channel/equalizer response is shown in Fig. 2(b). Simu-
lation results demonstrate the potential of the proposed method in
channel equalization.
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In the second example, the performance of the two FSE meth-
ods to equalize the channel is evaluated. The channel impulse
response � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

is shown in
Fig. 3(a) where � � � � � �

is a raised cosine pulse,
� � � � 	

is the
roll-off factor,

� � � �
is a window of length

� 

and

� � � 
 � �
.

The subchannel order is � � �
. The delay  � �

, oversampling
factor � � �

and the subequalizer length � � 	 � . The input
sequence is an i.i.d 16-QAM signal. Fig. 3(b) shows the received
signal while Fig. 3(c) and (d) show the equalized signal constella-
tion with method-A and method-B respectively at SNR= 25 dB.

In the third example, the robustness of the proposed algorithms
when the channel matrix approaches singularity is compared with
the subspace method presented in [2]. The channel impulse re-
sponse is � � � � � � 	 � � � � � � � � � � 	 � � � � � � � �

, � � � ,
� � �

, and
� � 	 � . The equalized signal constellation is shown in Fig. 4 at
SNR=20 dB.

In the fourth example, the bit error rate BER versus the signal-
to-noise ratios SNRs is considered. The channel impulse response
is � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � �

� � 	 �
. The parameters used are � � �

, � � �
,  � � and � � � .

The input sequence is drawn from BPSK constellation and the sig-
nal subspace order is assumed to be known. The BER is averaged
over 500 Monte Carlo runs. The performance is compared with [1]
(TXK) and [3] (Direct) and is shown in Fig. 5. In method-A, the
restriction that v � lies in the intersection of � � W � �

and � � A �� A � �
substantially improve the performance. While the improvement
in method-B arises as the method avoids the recursive estimation
error in [1] and the multiplication of the estimated covariance ma-
trices in [3] and [5].

6. CONCLUSION

In this paper, we have addressed the problem of blind channel
equalization. For minimum phase channels, we have proposed an
algorithm based on autocorrelation matching and formulated the
problem as a convex optimization SDP program. Moreover, we ex-
ploited the channel matrix structure induced by oversampling the
received signal and have proposed two methods for SIMO channel
equalization that outperform existing schemes.
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