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Supélec/LSS
3, rue Joliot-Curie

91192 Gif-sur-Yvette, FRANCE

ABSTRACT

M -ary bi-orthogonal modulation or M -ary bi-orthogonal keying
(MBOK) is a modulation scheme that has recently been considered
for use in several consumer wireless standards, including the IEEE
802.11 WLAN standard and the ultra wideband (UWB) 802.15.3a
WPAN standard. In this paper, we propose a novel blind adap-
tive equalizer for such signals. We then discuss the relation of
the algorithm to other blind algorithms and demonstrate its local
convergence. Finally, we present some numerical examples that
demonstrate its features and performance.

1. INTRODUCTION

M -ary bi-orthogonal modulation or M -ary bi-orthogonal keying
(MBOK) is a modulation scheme that has recently been consid-
ered for use in several consumer wireless standards, including the
IEEE 802.11 WLAN standard [1] and the ultra wideband IEEE
802.15.3a WPAN standard [2]. Though MBOK has been given se-
rious consideration by industry, very little attention has been paid
to MBOK by the research community, as evidenced by the dearth
of literature on the subject. In the applications where MBOK
has been considered, intersymbol interference (ISI) is certainly
present, and is viewed to be a serious impairment to acceptable
performance. While the optimum detector in ISI is the maximum-
likelihood detector, its complexity is usually too high for practical
implementation, and thus suboptimal schemes are desirable.

In this paper, we propose a linear blind adaptive equalizer
for MBOK. First, we present the equalizer structure and inves-
tigate the design equations for the minimum mean-squared error
(MMSE) equalizer, as well as the equations for trained and decision-
directed (DD) least mean squares (LMS) adaptive algorithms. While
the MMSE and LMS equalizers for MBOK follow from straight-
forward application of Wiener filter theory, our main contribution
in this paper is a novel blind algorithm. We will show that the al-
gorithm is locally convergent. After proposing the blind algorithm
and discussing its characteristics, we will conclude with several
simulations demonstrating its convergence properties and superior
performance over DD-LMS. In addition, the simulations show the
algorithm can blindly obtain the symbol timing under certain con-
ditions on the underlying bi-orthogonal signal set.
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2. SYSTEM MODEL

In MBOK, each symbol consists of K � M/2 chips and repre-
sents log2 M bits. The symbols are drawn from a set of K or-
thonormal vectors, and are modulated antipodally to give M pos-
sible symbols. Note that when M = 2, MBOK reduces to binary
phase shift keying (BPSK).

Let x[n] be a chip-rate sequence of MBOK chips, where the
symbols are i.i.d. and a complete symbol is generated at times that
are multiples of K. Thus, x[1], x[2], . . . , x[K] constitute a com-
plete symbol, for example, drawn from the orthonormal columns
of ±S where S ∈ R

K×K is an orthogonal matrix so that SS� =
I . By using orthonormal vectors, we are effectively fixing the
symbol power to be 1, so the power of the chip-rate process x[n]
becomes a function of M . Common choices for S include the
Hadamard matrix [1] and the identity matrix [2]; we will stress the
latter.

The process x[n] has some peculiar properties. The process is
not strictly stationary, but it is wide-sense stationary. Furthermore,
the chips are uncorrelated, but dependent. Thus,

E [x[n]x[n + m]] =

{
1/K m = 0

0 m �= 0
(1)

whereas the joint probability

P (x[n], x[n + m]) �= P (x[n])P (x[n + m])

unless x[n] and x[n + m] are from different symbols, i.e. unless
�n/K� �= �(n + m)/K�. That (1) is true may come as a surprise
at first, but can be proven by using the fact that the symbols are
i.i.d., and the fact that the rows of S are orthonormal.
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Fig. 1. System Model

The system model is shown in Fig. 1. The MBOK chips are
transmitted through a linear time-invariant channel with impulse
response h ∈ R

Nh and additive white Gaussian noise w[n] of
variance σ2

w. The received signal y[n] is passed through a linear
equalizer with impulse response f ∈ R

Nf . Since the decision
device must operate in block fashion, we will use a block symbol-
rate model to describe the signals. Let Nq � Nf + Nh − 1 and
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let the Hankel matrix X [Kn] ∈ R
Nq×K contain the transmitted

chips as

X [Kn] =

⎡
⎢⎢⎣

x[Kn] x[Kn−1] ... x[Kn−K+1]

x[Kn−1] x[Kn−2] . . .

...

x[Kn−Nq+1] . . .

⎤
⎥⎥⎦

so the first row of X [Kn] contains a complete symbol. Let H ∈
R

Nf×Nq be the Tœplitz convolution matrix whose rows contain
shifted versions of h�, and let W [Kn] ∈ R

Nf×K be the Hankel
matrix of noise w[n] defined similarly to the way X [Kn] is de-
fined above. Then, the received signal is represented by the Hankel
matrix Y [Kn] = HX [Kn] + W [Kn] and the output z ∈ R

K

of the equalizer is z[Kn] = Y �[Kn]f . The equalizer output
is passed into the decision device. The decision device assumed
in this paper is the naı̈ve memoryless Euclidean distance detector,
which is essentially a correlation detector [3]. We have chosen this
detector for its simplicity and low latency. When the equalizer is
operating correctly, the decision device output is

x̂[Kn] ≈ [x[Kn − ∆] . . . x[Kn − ∆ − K + 1]]�

where ∆ is the delay through the channel and equalizer, and is a
multiple of K.

3. MMSE AND LMS EQUALIZERS

3.1. MMSE Equalizer

Let e∆ ∈ R
Nq be the unit vector consisting of a 1 in the ∆th

location, where ∆ is a design parameter in this case. The mean-
squared error is given by

Jm(f ) = E
[
||z[Kn] − X�[Kn]e∆||22

]
.

Assuming the noise and data are uncorrelated, and using the facts
that E[XX�] = INq from (1) and for AWGN E[W W �] =

Kσ2
wINf , the orthogonality principle gives the MMSE equalizer

fm =
(
HH� + Kσ2

wINf

)−1

He∆. (2)

It is interesting to note that (2) coincides with the MMSE equal-
izer for BPSK modulation. Surprisingly, the MMSE equalizer for
MBOK is independent of the underlying orthonormal basis vec-
tors S. Furthermore, Kσ2

w is exactly the inverse chip SNR since
the chip power is 1/K from (1); thus, the MMSE equalizer is also
independent of the symbol alphabet size.

3.2. LMS Equalizer

Since the mean-squared error is quadratic, we can use the LMS
algorithm to calculate f adaptively when training data is available.
Taking the instantaneous gradient of the mean-squared error gives
the LMS update equation

f �[Kn + K] = f �[Kn] − µY [Kn]
(
z[Kn] − X�[Kn]e∆

)

where µ is a small positive step-size. Note that the presence of
X [Kn] in the update implies the availability of training data. When
training data is unavailable, we can feed back the output of the

decision device x̂[Kn] instead, arriving at the DD-LMS update
equation

f d[Kn + K] = f d[Kn] − µY [Kn] (z[Kn] − x̂[Kn]) .

However, DD equalizers are notoriously sensitive to initialization,
and generally require an open eye initialization.

3.3. Open Eye Condition

An open eye condition is the situation where the decision device
makes no errors in the absence of noise. Unfortunately, the open
eye regime for MBOK is in general smaller than the open eye
regime for BPSK. The open eye condition for BPSK requires the
channel coefficients satisfy |h[k]| >

∑
i�=k |h[i]| for at least one

value of k. The open eye condition for MBOK will depend on
the underlying orthonormal basis vectors S, and therefore a sim-
ple inequality is not possible. As an example, for an open eye in
MBOK with M = 4, S = I2, and Nh = 3, one of the following
3 conditions must be satisfied{ |h[0]| > 2|h[1]| − h[2] sgn(h[0])

|h[0]| > |h[1]| + |h[2]|

or

{ |h[1]| > 2|h[0]| + |h[2]|
|h[1]| > |h[0]| + 2|h[2]| (3)

or

{ |h[2]| > −h[0] sgn(h[2]) + 2|h[1]|
|h[2]| > |h[0]| + |h[1]|

where sgn is the signum function. This is a stricter condition than
that for BPSK. Intuition as to why the open eye regime is smaller
for MBOK comes about by considering that each symbol consists
of K chips, and thus the allowable channel coefficients for an open
eye will have to satisfy a greater number of inequalities to ensure
that K adjacent chips are relatively ISI-free. Decision directed
adaptation is generally not a good choice for cold startup of BPSK
equalizers, and the situation is only worse for MBOK signals. This
motivates a new blind method of equalizer adaptation for MBOK.

4. BLIND EQUALIZER

Here, we propose a gradient descent-based blind algorithm. Such
algorithms exploit some structure in the transmitted signal, and
their cost functions typically depend on higher order statistics; this
will be the case for our algorithm. As we pointed out in section
3.1, the second order statistics and hence the MMSE equalizer for
an MBOK signal are independent of S. However, the fourth-order
statistics of x[Kn] will not be independent of S, and thus we ex-
pect the performance of a candidate algorithm to depend on S. It is
unreasonable, then, to expect such a blind algorithm to work well
for arbitrary choices of S. For now, we will consider the case of
general S, but will later consider the specific choice S = I . This
choice of S is of interest because it is where our algorithm per-
forms best, and was also the choice considered in the recent UWB
proposal [2].

We have defined the MBOK symbols to each have unit norm,
so the cost function we choose for the blind algorithm is

Jb(f ) = E
[
(||z[Kn]||22 − 1)2

]
. (4)

Taking the instantaneous gradient of (4) gives the update equation

f b[Kn + K] = f b[Kn] − µY [Kn](z[Kn]�z[Kn] − 1)z[Kn]
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While at first glance this simple cost function seems to ignore a lot
of structure which is present in the MBOK signal, we show that
this is not the case and we draw connections to several other blind
algorithms. The form of (4) looks much like the constant modulus
algorithm (CMA) [4], and in fact coincides with CMA when M =
2. The cost function shares even more similarity with Vector CMA
[5], though it is distinct in that our algorithm is driven by data that
is not i.i.d., and it operates only once every K chips. Because of
these two facts, the cost surface and algorithm performance will
be quite different from Vector CMA. Borrowing an idea from [6],
and noting that z[Kn] = [z[Kn] . . . z[Kn − K + 1]]�, we see
that the cost function can be expanded as

Jb(f ) = (1 − K) +

K−1∑
i=0

E
[
(z2[Kn − i] − 1)2

]

+

K−1∑
i=0

K−1∑
j=0,j �=i

E[z2[Kn − i]z2[Kn − j]].

The gives an interesting interpretation since the second term is ex-
actly the CMA cost when operating chip-by-chip, while the third
term represents a penalty of the cross-correlation of the squared
equalizer output.

5. STABILITY OF ZERO-FORCING SOLUTIONS

To investigate the zero-forcing (ZF) solutions, we first assume that
there is no AWGN, so σ2

w = 0. We define the combined chan-
nel and equalizer response q � H�f ∈ R

Nq . Recalling that
E[X [Kn]X�[Kn]] = INq , we can expand the cost function (4)
as

Jb(f ) = E
[
(q�X [Kn]X�[Kn]q)2

]
− 2q�q + 1

=

Nq−1∑
k,�,m,p=0

q[k]q[�]q[m]q[p]r[k, �, m, p]

−2

⎡
⎣Nq−1∑

k=0

q2[k]

⎤
⎦ + 1 (5)

where

r[k, �, m, p] �
K−1∑
u,v=0

E
[
x[Kn − k − u]x[Kn − � − u]

· x[Kn − m − v]x[Kn − p − v]
]

for 0 ≤ k, �, m, p ≤ Nq − 1. We note that r has the symmetry
properties

r[k, �, m, p] = r[�, k, m, p] = r[k, �, p, m] = r[m, p, k, �].

Another property of r is that, for any ∆ that is a multiple of K,

r[k, �, ∆, ∆] = δ[� − k]. (6)

where δ is the Kronecker delta. Due to space limitations, we will
not show the proof for (6), but it relies on the facts that E[x[n]] =
0, the process x[n] is cyclo-stationary, the symbols are i.i.d., and
rows and columns of S are orthonormal.

Taking the derivative of (5) gives

1

4

∂Jb(f )

∂f [i]
=

i+Nh−1∑
k=i

h[k − i] (7)

·
⎡
⎣

⎛
⎝ Nq−1∑

�,m,p=0

q[�]q[m]q[p]r[k, �, m, p]

⎞
⎠ − q[k]

⎤
⎦

︸ ︷︷ ︸
�Λ[k]

where we have used the symmetry of r in simplifying the expres-
sion. The gradient can be written in matrix form as ∇Jb(f ) =
4HΛ where H is the channel matrix and the vector Λ ∈ R

Nq is
defined in (7). The Hessian is then

1

4

∂2Jb(f )

∂f [i]∂f [j]
=

i+Nh−1∑
k=i

h[k − i]

j+Nh−1∑
�=j

h[� − j]Ψ[k, �]

where

Ψ[k, �] � −δ[� − k] (8)

+

Nq−1∑
m,p=0

q[m]q[p] (r[k, �, m, p] + 2r[k, p, m, �]) .

The Hessian matrix becomes H Jb(f ) = 4HΨH� where the
non-bold H denotes the Hessian operator, and the square matrix
Ψ ∈ R

Nq×Nq is defined in (8).
Thus, stationary points come in two varieties: those where

Λ = 0 and those where Λ is in the null space of H . We note
that there is always a maximum at f = 0 since for this value of
f the gradient is zero, and the Hessian is −4I which is negative
definite.

In BPSK, admissible ZF solutions are those where q ≈ e∆

for any ∆. In MBOK, however, the chips must be aligned to
the symbol boundary before passing through the decision device;
thus, we define the ZF solutions as those where ∆ is a multiple
of K. To analyze the gradient at the ZF solutions, we substi-
tute q[n] = δ[n − ∆] into (7) and use (6) to obtain Λ[k] = 0,
and thus ∇Jb(f )|q=e∆

= 0, so the ZF solutions are stationary
points. Now, we need to show that they are minima. Substituting
q[n] = δ[n − ∆] into (8) and again using (6) gives

Ψ[k, �] = 2r[k, ∆, ∆, �]. (9)

Thus far, we have not assumed anything about S other than its
orthogonality. As mentioned previously, the fourth order terms
will depend on the particular choice of S, and so the expression
r[k, ∆, ∆, �] will depend on S. We will show the positive defi-
niteness of the Hessian for the particular choice S = I . When
S = I and for any ∆ that is a multiple of K,

r[k, ∆, ∆, �] = 0 for k �= �
> 0 for k = �

. (10)

The proof of this uses the same brute-force machinery as in prov-
ing (6). From (9) and (10), we see that Ψ reduces to a diagonal
matrix of strictly positive values. Since H is full row rank and Ψ
is a diagonal matrix of positive values, the Hessian is positive def-
inite [7]. Thus, we have shown that the algorithm admits the ZF
solutions as extrema, and that they are minima in the case when
S = I .
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6. NUMERICAL EXAMPLES

6.1. Visualizing the cost surface

For illustration, consider the noiseless case with h = 1, Nf = 2,
and S = I2, so there are K = 2 chips per symbol. This choice
of h may seem trivial, but it allows us to focus on the class of
minima where Λ = 0 since H reduces to the identity matrix. The
cost surface is shown in Fig. 2, where we observe the presence
of a maximum at the origin and only 2 minima, those at the ZF
solution q = f = ±[1, 0]�. It is interesting to note that minima
do not also occur at q = ±[0, 1]�, as they would for BPSK, but
instead there are saddle points in that region. The fact that these
are not mimima implies that the proposed algorithm can acquire
the symbol timing since, as hoped, minima only occur for ∆ a
multiple of K. If we change the underlying basis vectors so that S
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Fig. 2. Cost surface

is the 2 × 2 Hadamard matrix, minima do appear at q = [0, 1]�.
For this choice of S, the chip statistics are identical to BPSK since
the symbols become ±[1, 1],±[1,−1]. Thus, when S is chosen to
be the Hadamard matrix, the algorithm has no hope of recovering
the symbol timing since the chips are effectively i.i.d. and so we
have the appearance of false minima at undesirable delays.

6.2. Approximate Constellation Rotation

We can plot a K-dimensional symbol constellation by plotting the
value of each chip along an axis. The ideal constellation has points
at (±1, 0) and (0,±1) when S = I2, for example. The effects
of a linear filter on the MBOK symbol constellation conflict with
our intuition for more traditional 2-D constellations like quadra-
ture amplitude modulation (QAM). Nevertheless, we know that
CMA-like (i.e. dispersion minimization) cost functions are invari-
ant to rotation, and it is interesting to consider what class of im-
pulse responses might cause a constellation rotation in MBOK,
and whether our algorithm may exhibit rotational invariance.

It turns out that impulse responses exhibiting perfect arbitrary
constellation rotations are not possible, except for the rotation an-
gle θ = π, which is possible with the one-tap combined response
q = −e∆. However, we can find responses that are approximate
rotations. The class of impulse responses that best approximate
a rotation in the least-squares sense are those of the form q =
[. . . , 0, 1

2
sin θ, cos θ,− 1

2
sin θ, 0, . . .]� where there are at most 3

non-zero coefficients. However, as the rotation angle varies, the
cluster variance of the rotated constellation oscillates as (sin2 θ)/2.
This implies that rotated constellations with angles near 0 and π
are best approximated, and angles near θ = ±π/2 result in poor
approximations to a rotated constellation since the constellation
points spread out.

It is interesting to explore whether the algorithm exhibits any
false minima, and whether there are any stationary points near q =
[ 1
2

sin θ, cos θ,− 1
2

sin θ]� for some θ that is not a multiple of π.
Consider the noiseless case with h = 1, Nf = 3, and S = I2.
After expanding the cost and analyzing the gradient and Hessian,
we find stationary points at the following locations:

q� type
[0, 0, 0] maximum

[±1, 0, 0], [0, 0,±1] minima
[0,±√

2/3, 0], [±√
1/3, 0,∓√

1/3] saddle pts
[±√

1/5,±√
2/5,∓√

1/5]

[±√
1/5,∓√

2/5,∓√
1/5]

degenerate saddle pts

We see again that the minima occur only at the ZF solutions, and
that there are not minima at q = ±[0, 1, 0]�, as there would
be in CMA for BPSK. Furthermore, we see degenerate saddle
points that correspond to approximate constellation rotations with
θ = tan−1(

√
2). A degenerate saddle point is one where the Hes-

sian is singular, which implies the cost surface is very flat, and the
adaptive algorithm will likely suffer convergence speed problems
as it passes through this region. However, for this numerical ex-
ample we observe no undesirable local minima, and the algorithm
will provide convergence to a solution with globally optimally per-
formance.

Simulations confirm that the DD-LMS algorithm is sensitive
to initialization, and can fail to equalize the channel. Using the
initialization f init = [0.8,−1,−0.1]�, the blind algorithm con-
verged to the ZF solution f b = [1, 0, 0]� while the DD algorithm
converged to the closed-eye solution f d = [0.51,−1.03,−0.07]�.

7. CONCLUSION

We have proposed a novel blind algorithm for the equalization of
MBOK signals. We then demonstrated that the algorithm has lo-
cal convergence to the ZF solutions when S = I , and several
examples suggest that the algorithm can obtain the symbol timing
blindly as well. Future work could attempt to prove convergence
to solutions with globally optimally performance, and could inves-
tigate modifications to the algorithm so that it performs well with
arbitrary bi-orthogonal signal sets.
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