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ABSTRACT

We present two novel methods for the blind extraction of
multiple binary signals from a single observation generated
from linear convolution and superposition. Both methods
are based on two features: (a) the constellation structure of
the successor set for each output value, and (b) the concept
of system deflation, ie. the recursive shortening of the chan-
nel until it is reduced into an instantaneous mixture. The
two methods differ in complexity as the latter requires sig-
nificantly smaller amounts of data. Both methods are fast
for small problem sizes but their complexities increase ex-
ponentially as the number of inputs and/or channel length
increases. We present the complete analytical solution to
the noiseless case and we thoroughly treat the related math-
ematical tools and concepts. The noisy case is briefly dis-
cussed as the complete treatment would exceed the scope of
the present paper.

1. INTRODUCTION

The Blind Deconvolution of a MIMO system refers to the
extraction of the unknown inputs from the observed out-
puts, without knowledge of the system itself. This prob-
lem is also referred to as Blind Signal Separation (BSS)
from linear convolutive mixtures. This problem is very im-
portant, for example, in wireless communications, where
n transmitted signals corrupted by intersymbol interference
(ISI), multiuser interference (MUI), and noise are received
at m antennas. In general, sufficient number of receivers
(m ≥ n) guarantee the deconvolution of the signals using
various techniques [1, 2]. On the other hand, in the case
of multiuser digital subscriber lines (DSL) and asychronous
DSL (ADSL), n sources are mixed in one signal and trans-
mitted through a telephone line. In typical telephone com-
munication standards, several lines are grouped in a cable
bundle, introducing crosstalk effects. This system is under-
determined and is rarely studied. It can be modeled using
the Multi-Input Single-Output (MISO) model.

In this paper we treat MISO systems with binary inputs.
The blind deconvolution of a MISO system with finite al-
phabet signals is discussed in [3]. The approach is algebraic
and converts the nonlinear system into a linear one using the
finite alphabet property. The application of a MIMO tech-
nique to a MISO system was proposed in [4]. The method
behaves almost as good as in the MIMO case. In [5], a semi-
blind technique is presented, in which training sequences of
the system are available and they can be used to acquire
channel estimates. Aldana et al. in [6] treats the input sym-
bols as discrete random variables in a stochastic likelihood
criterion. The system is solved by applying the Expectation-
Maximization algorithm in the frequency domain.

The approach presented here is essentially geometric. It
is not related to the second or higher order statistics of the
signals. Instead, we exploit the constellation structure of the
successors to each output value. Our model is described by
the following equation:

x(k) =
L−1∑
l=0

aT
l s(k − l) + e(k), k = 1, ...,K (1)

where al for l = 0, ..., L − 1 are a set of unknown real n-
dimensional mixing vectors, s(k) = [s1(k) · · · , sn(k)]T is
the n-dimensional source signal, and e(k) corresponds to
additive gaussian noise. The n independent binary sources
take discrete values from the set {−1, +1}. The observa-
tions of the mixtures are real-valued scalars. We start by
ignoring the noise in Section 2 so that the underlying math-
ematical ideas are clearly introduced. Based on these ideas
two alternative methods are proposed in Sections 2.1 and
2.2. The more realistic noisy model is briefly discussed in
Section 3. A more elaborate treatment of the noise is re-
served for the full paper. The present work is an extension
of [7] where the problem for n = 1, L = 1 has been treated.
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2. THE NOISELESS CASE

Two methods will be presented in the noseless case. Both
exploit the constellation structure of the successor values
in order to achieve recursive system deflation. The second
method is more efficient compared to the first one in terms
of required data lengths.

2.1. First Method

Each source sample s(k) is a vector composed of n binary
elements and, thus, it can take exactly 2n values denoted by

v1 = [−1,−1,−1, · · · ,−1,−1,−1]T

v2 = [−1,−1,−1, · · · ,−1,−1, +1]T

...

v2n−1 = [+1, +1, +1, · · · , +1, +1,−1]T

v2n = [+1, +1, +1, · · · , +1, +1, +1]T (2)

Moreover, each observation x(k) is generated by the lin-
ear combination of L source vectors. Consequently, the ob-
servation space X is a discrete set consisting of, at most,
2M elements, ie. |X | ≤ 2M , M = nL. We will have
|X | < 2M if and only if there exist two separate L-tuples
{b0, · · · ,bL−1} and {b′

0, · · · ,b′
L−1}, of binary vectors such

that
∑L−1

l=0 aT
l bl =

∑L−1
l=0 aT

l b′
l. We avoid this situation by

making the following assumption:

Assumption 1 For every observation value r = x(k) ∈ X ,
some k, there exists a unique L-tuple {b0, b1, · · · , bL−1}
of source vectors {s(k), s(k − 1), · · · , s(k − L + 1)} that
generates r according to Eq. (1).

From Assumption 1 it follows that the cardinality of X is
exactly 2M . In the following we will use, when necessary,
the notation {b0(r), b1(r), · · · , bL−1(r)} to denote the
unique L-tuple of source vectors that generates the observa-
tion r ∈ X .

Let us now take any observation value r ∈ X and let
x(k) = r, for some k. The successor observation x(k + 1)
is:

x(k + 1) = aT
0 s(k0 + 1) +

L−1∑
l=1

aT
l s(k − l + 1)

x(k + 1) = aT
0 s(k0 + 1) +

L−1∑
l=1

aT
l bl−1(r) (3)

since, by definition, for l = 0, · · · , L − 1,

bl(r) = s(k − l).

The first term on the right-hand-side of Eq. (3) depends
on the binary vector s(k + 1) which can take 2n distinct

values, v1, ..., v2n . The second term depends only on r.
Therefore, for a fixed r, there exist 2n possible values for
x(k + 1) called successors of x(k) and denoted by σi(r),
i = 1, · · · , 2n:

σi(r) = aT
0 vi +

L−1∑
l=1

aT
l bl−1(r) i = 1, · · · , 2n(4)

Let us now compute the mean µ(r) of the 2n successors,
noting that

∑2n

j=1 vj = 0, to obtain:

µ(r) =
1
2n

2n∑
i=1

σi(r)

=
1
2n

⎛
⎝aT

0

2n∑
j=1

vj + 2nx(2)(k)

⎞
⎠

= x(2)(k) (5)

where

x(2)(k) =
L−1∑
l=1

aT
l bl−1(r)

x(2)(k) =
L−1∑
l=1

aT
l s(k − l + 1) (6)

Eq. (6) representes a shortened MISO system compared to
the original system of Eq. (1). It is clear that the new MISO
system has the same taps as the original one except for the
absence of a0 and the input time-shift. Of course the length
of the new system is L−1, i.e. one less than the initial length
L. Based on the above analysis the method for reducing the
system length is described by the following steps:

Step 1. For every k locate the set of points x(kj), j =
1, 2, · · · , for which x(kj) = r = x(k).

Step 2. Find the set Σ(r) = {x(kj + 1); j = 1, 2, · · · } of
the successors of x(k)

Step 3. Identify 2n distinct values σi(r) in Σ(r)

Step 4. Compute the mean µ(r) = 1/2n
∑

i σi(r)

Step 5. Replace x(kj) by µ(r), for all j.

This procedure will be called filter deflation or system de-
flation. Clearly, it is essential for the present method that all
observation/successor pairs [r, σi(r)], i = 1, · · · , 2n, will
appear, at least once, in the output sequence x. Thus, we
make the following assumption

Assumption 2 For any r ∈ X , there are at least 2n time
indices k1, k2, · · · , k2n ∈ {1, 2, · · · ,K} such that x(ki) =
r and x(ki + 1) = σi(r), where i = 1, · · · , 2n.
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The above deflation method can be recursively applied
L − 1 times until the system is reduced into:

x(L)(k) = aT
L−1s(k − L + 1) (7)

The estimation of the sources s from Eq. (7) has been treated
elsewhere (see [8, 9]).

2.2. Second Method

The main disadvantage of the method presented in section
2.1, comes as a result of the second assumption, where it
is stated that every possible pair of observations must exist
in the dataset. As the complexity of the MISO system in-
creases (more sources and more filter taps), the validity of
the second assumption requires exponentially larger obser-
vation datasets. In order to treat cases where large datasets
are not available, we propose a second method based on the
same principles. This second method also requires the va-
lidity of Assumption 1. However, instead of Assumption 2,
a less restrictive one will be introduced next:

Assumption 3 For only one r0 ∈ X , there exist at least 2n

ki, i = 1, · · · , 2n ∈ {1, 2, · · · ,K} such that x(ki) = r0,
x(ki + 1) = σi(r0), i = 1, · · · , 2n. In addition to that,
every possible value of X exists at least once in the dataset.

Equiped with Assumption 3, instead of Assumption 2,
we can still compute the following values

ci = aT
0 vi = σi(r0) − µ(r0) i = 1, · · · , 2n (8)

We shall refer to the set C = {ci; i = 1, · · · , 2n} as the
successor constellation set of system (1). Now, for every
observation value r = x(k) ∈ X we have

r = aT
0 vi +

L−1∑
l=1

aT
l bl(r) (9)

= ci +
L−1∑
l=1

aT
l bl(r), some i (10)

Furthermore, due to the symmetry of the constellation set,
there exists a “dual” observation value rd ∈ X such that

rd = −ci +
L−1∑
l=1

aT
l bl(r) (11)

so

rd = r − 2ci (12)

The mean of the two values is

µ2(r) = (r + rd)/2 =
L−1∑
l=1

aT
l bl(r) (13)

Note that bl(r) = s(k − l). Therefore, if we replace x(k)
by µ2(r) we obtain a new, shortened MISO system, similar
(although not identical) to (6)

x̃(2)(k) =
L−1∑
l=1

aT
l s(k − l) (14)

The problem now is to identify the dual observation rd. The
next assumption leads to the solution.

Assumption 4 For every observation r ∈ X , there exists a
unique j ∈ {1, · · · , 2n} such that r − 2cj ∈ X .

Using Assumption 4 the dual value rd can be found by test-
ing all r − 2cj , j = 1, · · · , 2n, for membership in the ob-
servation space X .

Summarizing the above results, our second method for
obtaining the deflated system (14) is described below:

Step 1. Locate an observation value r0 for which 2n dis-
tinct successors σi(r0), i = 1, · · · , 2n, exist in the
dataset

Step 2. Compute the successor constellation set C accord-
ing to (8)

Step 3. For every observation r = x(k) find the (unique)
value j for which r − 2cj ∈ X . Call rd = r − 2cj .

Step 4. Replace x(k) by (r + rd)/2

Again, the L − 1 times repetition of this algorithm will re-
duce the system into a memoryless one

x̃(L)(k) = aT
L−1s(k) (15)

which can be treated as described in section 2.1.

2.3. Comparing the two methods

The main advantage of the second method over the first one
is that it requires quite smaller datasets. In order to estimate
this advantage, we randomly created large datasets and we
identified the minimum dataset which satisfies the assump-
tions for each method. We tested 100 datasets for different
MISO systems and we kept the worst case (the maximum
dataset length). Results of the conducted experiments are
presented in Table 1. It can be observed that the gain in-
creases as the system becomes more complex. For SISO
Systems the gain is around 50%, while for more complex
cases (L > 2 and n > 2) the gain increases upto 90%. It
is noteworthy that in a Pentium III 2.6 GHz processor, the
MATLAB implementation of method 2 with K = 100, 000
samples, n = 3, and L = 3, runs in less than 5 seconds.
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Table 1. Dataset sizes satisfying the assumptions of meth-
ods 1 and 2, and relative dataset-size reduction.

n L Method 1 Method 2 Gain (%)

1 2 64 33 48.44
1 3 133 72 45.86
1 4 396 176 55.56
2 1 98 39 60.20
2 2 658 108 83.59
2 3 3228 685 78.78
2 4 11801 2678 77.31
3 1 499 148 70.34
3 2 6888 657 90.46
3 3 49994 6349 87.30
4 1 2657 611 77.00
4 2 61605 6206 89.93

3. THE NOISY CASE

The above methods can be extended to noisy systems al-
though detailed discussion of this case is impossible due
to lack of space. Here we shall only outline a simple case
where the observation is infected with low-level noise. The
general model that represents an observation x(k) is:

x(k) = r + e(k), k = 1, ...,K (16)

where r is a noiseless prototype value, ie. a member of the
observation space X . Remember that there exist 2nL such
prototypes. Each prototype r is associated with a class Ir

of observations x(k) ∈ Ir, that are noisy versions of r ac-
cording to (16). If the noise level is sufficiently low then Ir

is defined as {x(k); r = arg
ρ

min |x(k) − ρ|}. Thus every

noisy observation x(k) would be successfully clustered in
the appropriate class. In order to estimate the prototypes r
a clustering process can be used. Then every x(k) ∈ Ir is
replaced by the estimate of the cluster center r̂ and the Blind
Deconvolution method proceeds as in the noiseless case.
We succesfully tested the above approach using a cluster-
ing scheme based on the properties of the statistical median
and the k-means clustering. However, higher noise levels
render this approach useless since a large number of out-
put samples are misclassified. Due to lack of space detailed
treatement of this case is postponed for future work.

4. CONCLUSION

A novel approach for the blind deconvolution of MISO sys-
tems with binary sources was presented in this paper. We in-
troduce the concept of the successor constellation set which
is instrumental for the development of a system deflation

process. Recursive application of system deflation leads to
a linear memoryless system. We present two methods based
on these ideas. The first method requires large datasets in
order to successfully estimate the sources, while the second
one is less data-demanding yet more complex. The paper
describes in detail the noise-free case and gives only a brief
outline of a simple noisy scenario. The complete treatment
of the noisy case is reserved for a future publication.
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