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ABSTRACT

We propose a general framework for joint resource alloca-

tion and interference control for classes of interference func-

tions based on an axiomatic model. This model holds for a

wide range of multiuser channels and even allows the incor-

poration of interference suppression techniques. The quality

of service (QoS) of each user is modeled as a function of the

interference. It is shown that for certain mappings between

interference and QoS, the resulting achievable region is a

convex set. Furthermore, we show that the problem of op-

timizing the sum of weighted QoS over the transmit powers

is convex for certain classes of QoS functions. The choice

of the weights determines the trade-off between fairness and

overall efficiency. The problem can be solved efficiently by

standard convex optimization techniques.

1. INTRODUCTION

The control of multiuser interference plays a fundamental

role in wireless communications. Interference depends on

the power allocation, as well as on signal processing and

coding techniques used at the physical layer. Traditionally,

power control and resource allocation are associated with

higher layers, so that the signal processing is performed more

or less independently. However, the physical layer design

may have a drastic effect on the effective interference situ-

ation, thus much better results can be expected from cross-

layer designs, which jointly optimize the resource allocation

with the signal processing.

In this paper we propose a general framework for re-

source allocation based on weighted quality-of-service (QoS)

functions. Following the approach in [1], we assume an ax-

iomatic interference model, which incorporates many lin-

ear and non-linear processing strategies, e.g. the multiuser

3 The authors are supported in part by the Bundesministerium für Bildung
und Forschung (BMBF) under grant 01BU350.

beamforming problem [2] or CDMA receiver designs. For

a certain class of QoS functions, we study properties of the

achievable region. Finally, the results are used to develop an

algorithmic solution. Proofs are sketched in the appendix.

Some notational conventions are: Matrices and vectors

are set in boldface. Let y be a vector, then y > 0 means that

yl := [y]l > 0 for the lth component.

Interference Model. Consider a multiuser system with K
users subject to mutual interference. The amount of interfer-

ence experienced by the individual users can be controlled

by properly allocating the transmit powers, which are col-

lected in a vector p = [p1, p2, . . . , pK ]T . We also consider

the effect of receiver noise with power σ2. Both quantities

are stacked in an extended power vector p̄ =
[ p

σ2

]
. The

link of the kth user is corrupted by interference Ik, being a

function of the power allocation p̄. Thus, an adequate per-

formance measure for each user is the ratio between the de-

sired signal power and interference+noise power

SINRk(p̄) =
pk

Ik(p̄)
∀k ∈ {1, 2, . . . , K} .

In order to keep the results as general as possible, we will

not focus on a particular system design. Instead, we assume

that Ik(p̄) is characterized by the following properties.

Definition 1. A function Ik : R
K+1
+ �→ R+ is called inter-

ference function if the following properties hold.

A1: Ik(p̄) is continuous on R
K+1
+

A2: Ik(µp̄) = µIk(p̄) for all p̄ ∈ R
K+1
+ and µ > 0.

A3: Ik

([ p1

σ2

]) ≥ Ik

([ p2

σ2

])
if p1 ≥ p2.

A4: Ik

([ p

σ2
1

])
> Ik

([ p

σ2
2

])
if σ2

1 > σ2
2 .

As an example, consider a multi-access channel with a link

gain matrix Ψ(z) ∈ R
K×K
+ , which possibly depends on
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some equalization strategy z. Then, Ik could take on the

non-linear form

I(Ψ)
k (p̄) = min

z

∑
l �=k

pl [Ψ(z)]kl + σ2, 1 ≤ k ≤ K . (1)

Thus, the proposed axiomatic definition of interference func-

tions implicitly contains known problems in signal process-

ing, like the joint optimization of beamformers and transmit

powers [2].

2. QoS ACHIEVABLE REGION

Interference has a direct impact on the QoS of each user. We

assume that the QoS is related to the SINR by a bijective

mapping f , i.e., we have

Qk = f(SINRk), 1 ≤ k ≤ K . (2)

Let γ be the inverse function of f , then the QoS requirement

Qk translates into the SINR requirement γk := γ(Qk).

Theorem 1. The targets Q = [Q1, . . . , QK ]T are feasible,
i.e., there exists a power allocation p̄ such that SINRk(p̄) ≥
γ(Qk), ∀k ∈ {1, 2, . . . , K}, if and only if Cγ(Q) < 1,
where

Cγ(Q) = inf
p>0

(
max

1≤k≤K

γ(Qk)Ik(p̄)
pk

)
. (3)

If the powers p are unconstrained, then the achievable

QoS region

Q = {Q : Cγ(Q) < 1} (4)

is only limited by mutual interference.

The region may be further restricted by additional power

constraints. To this end, suppose that targets Q1, . . . , QK

are feasible, i.e., Q ∈ Q. Then we can minimize the total

transmit power subject to QoS constraints:

Pmin(Q) = min
K∑

k=1

pk s.t. SINRk(p̄) ≥ γ(Qk) . (5)

Problem (5) has a unique optimizer popt(Q), which is char-

acterized by

popt
k

Ik(p̄opt)
= γk, 1 ≤ k ≤ K . (6)

Thus, the QoS region under a total power constraint is de-

fined as

Q(Pmax) = {Q :
∑

k

popt
k (Q) ≤ Pmax} .

The unconstrained region (4) is the union over all constrained

regions

Q =
⋃

Pmax

Q(Pmax) . (7)

Similarly, the QoS region under individual power constraints

p̃ = [pmax
1 , . . . , pmax

K ] is

Q(p̃) = {Q : popt(Q) ≤ p̃} . (8)

An arbitrary point Q in the respective achievable region is

reached by the following algorithm, which monotonically

converges to the unique allocation with optimal sum power

efficiency [1]:

1: initialize: n := 0, p̄(0) := [0, . . . , 0, σ2]T

2: repeat
3: n := n + 1
4: p

(n)
k := γ(Qk)Ik(p̄(n−1)), ∀k ∈ {1, 2, . . . , K}

5: p̄(n) := [p(n)
1 , . . . , p

(n)
K , σ2]T

6: until convergence

It can be observed that σ2 > 0 is required. The result ex-

tends previous work on decentralized power control [3, 4],

where a specific choice of interference functions Ik is as-

sumed.

Interestingly, the uniqueness of the optimum power al-

location [1] holds for all kind of interference functions I
which fulfill the axioms A1-A4. Thus, it can be concluded

that uniqueness also holds for the joint optimization of beam-

formers and transmit powers [2], where the interference func-

tions have the non-linear form (1). Note, that uniqueness of

the optimal powers is not obvious, since the optimal beam-

formers themselves are not unique. The same result has been

shown recently by means of a completely different mathe-

matical technique [5].

3. GEOMETRICAL PROPERTIES FOR SPECIAL
CLASSES OF QoS FUNCTIONS

In order to optimize the QoS over the achievable region, it is

desirable to know the geometrical properties of the region.

In this section we restrict our attention to certain classes

of QoS functions. Namely, we assume that γ(Q) is log-

convex1. Some examples for mappings f with log-convex

inverse are: log(SINR) (capacity in the high SNR regime) or

1/SINRd (bit error approximation for diversity order d [6]).

We further restrict our attention to classes of interference

functions Ik(es) which are log-convex with respect to s.

Here we substitute p := es for the power vector. It should

be emphasized that this property is fulfilled, e.g. by all inter-

ference functions with the common linear form
∑

l plνl+σ2
n

for some path attenuations νl and receiver noise σ2
n.

Theorem 2. Cγ(Q), as defined in (3), is log-convex with
respect to Q.

Moreover, it can be shown that 1) If γ(Q) is strictly log-

convex, then Cγ(Q) is strictly log-convex. 2) If the func-

tions Ik(p(λ)), with p(λ) = es(λ), s(λ) = (1 − λ)s(0) +
1A function f is called log-convex if log f is convex. Log-convexity is

stronger than convexity since each log-convex function is convex, but the

converse is not true.
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λs(1), s(0) �= s(1), are strictly log-convex, then Cγ(Q) is

strictly log-convex.

Theorem 3. Let popt(Q) be the optimizer of the power min-
imization problem (5) with target SINR’s γ(Qk), 1 ≤ k ≤
K, where γ(Qk) is log-convex, then the functions popt

k (Q),
1 ≤ k ≤ K, are log-convex with respect to Q.

Theorem 4. The minimum total power Pmin(Q), as defined
in (5), is log-convex with respect to Q.

For the scenario under consideration (axioms A1-A4 plus

the above assumptions), it can even be shown that the feasi-

bility region Q is strictly convex. Thus, if Q(1) and Q(2) are

boundary points of the QoS feasibility region, then all points

on the interconnecting line lie in the interior of the region.

Furthermore, if γ(Q) is log-convex, then the set Q(p̃), as de-

fined in (8), is convex, and the achievable region Q(Pmax)
is strictly convex.

4. RESOURCE ALLOCATION BY WEIGHTED QoS
OPTIMIZATION

In this section we focus on another class of QoS functions.

We assume that the SINR is mapped on the QoS region by a

function f(x) = g(1/x), thus

Q = g(1/SINR) .

The function g is assumed to be monotonically increasing

and g(ex) shall be convex with respect to x. Examples for

such functions are g(x) = x or g(x) = log x. Thus, the QoS

is proportional to the inverse SINR, which can be interpreted

as the bit error rate approximation, as discussed in Section 3.

A general strategy for network resource allocation is

min
s∈RK

K∑
k=1

αk g
(Ik(es)/esk

)
s.t. ‖es‖1 ≤ Pmax , (9)

where the interference function Ik fulfills the axioms A1-

A4. In addition, Ik(es) is log-convex in s. The weights

α = [α1, . . . , αK ] model individual user requirements and

possibly depend on system parameters like priorities, queue

lengths, etc. By appropriately choosing α it is possible to

trade off throughput against fairness (illustrated in Fig. 1).

The optimum can be found with the following result [7].

Theorem 5. The problem (9) is convex if and only if g(ex)
is convex with respect to x.

Thus, with the results in Section 3 we have two different

definitions of QoS functions, namely f and g, whose special

properties ensure that the resulting QoS regions are convex.

For the special choice of g we can even solve the general

problem of weighted QoS optimization of the form (9).

QoS admissible region

Q1

α

Q2

Fig. 1. The resource allocation problem: weighted mini-

mization over the boundary of the QoS achievable region

Note, that the optimization is over the non-compact set

R
K , thus even if the problem is convex, it is not obvious that

the optimum is achieved (e.g. s → −∞ might be necessary

to achieve a valid QoS point). However, this case is excluded

by axiom A4 and the fact that σ2
n > 0. For a practical system

with receiver noise σ2
n > 0, we always have strictly positive

interference I(p̄) > 0. Thus, esk → 0 can be ruled out,

since otherwise the objective would tend to infinity, away

from the minimum.

Such a behavior is desired for systems, where all users

are active at the same time. Then, (9) could be used to con-

trol certain performance aspects, like bit error rates. For any

choice of parameters α, the optimization problem (9) can be

solved by standard convex optimization techniques.

5. CONCLUSIONS

The complex problem of joint interference equalization and

resource allocation can be handled by using an axiomatic

approach. Many properties known in power control the-

ory [3,4] and network optimization [7] can be extended to a

more general framework.

In this paper we show for certain classes of QoS func-

tions, that the resulting achievable region has suitable geo-

metrical properties. This helps to better understand the per-

formance tradeoff between users in a network. The convex-

ity of the region allows for efficient algorithmic solutions.

The results may prove useful for a wide range of problems

in the field of interference management and resource allo-

cation. By optimizing over the boundary of the achievable

region it is possible to trade-off fairness against efficiency.

Sketches of the Proofs

Thm. 1. Suppose that there exists p̄′ such that Q is feasible.

Let p̄′(λ) :=
[

λp′
1

]
. The function fk(λ) := λp′

k

Ik

(
p̄′(λ)

) =

p′
k

Ik

([
p′

1/λ

]) is strictly monotonically increasing in λ (axiom A4).

Combining axioms A3 and A4 and defining Ik(p) := Ik

([ p
0

])
,
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it follows that for all λ > 1 we have

p′k
Ik(p′)

>
p′k

Ik

([
p′

1/λ

]) >
p′k

Ik(p̄′)
≥ γk, ∀k .

Thus, min1≤k≤K
p′

k

γkIk(p′) > 1 and C(Γ) > 1.

Conversely, assume that C(Γ) > 1, which implies the

existence of a vector p̂ such that p̂k

Ik(p̂) > γk, 1 ≤ k ≤ K.

The function Ik

([ p̂
1/λ

])
is strictly monotonically increasing

in λ. Because of the continuity of Ik (axiom A1) we have

lim
λ→∞

Ik

([ p̂
1/λ

])
= Ik(p̂) <

p̂k

γk
.

Thus, there exists a λ such that
pk(λ)

Ik

(
p̄(λ)

) > γk, 1 ≤ k ≤ K,

which proves feasibility. �

Thm 2. Let Q(λ) = (1 − λ)Q(1) + λQ(2), λ ∈ [0, 1],
where Q(1), Q(2) ∈ Q. Also, γ(λ) := γ(Qk(λ)) and γ

(l)
k =

γ(Q(l)
k ), l = 1, 2. There exists an ε > 0 and vectors p

(1)
ε ,

and p
(2)
ε , such that

max
1≤k≤K

log
γ

(l)
k Ik(p(l)

ε )

[p(l)
ε ]k

≤ log Cγ

(
Q(l)

)
+ ε, l = 1, 2 .

(10)

Substituting s
(l)
ε = log p

(l)
ε , we define s(λ) = (1−λ)s(1)

ε +
λs

(2)
ε and p(λ) = es(λ) . It can be shown that

log
(
γk(λ)

Ik

(
es(λ)

)

[es(λ)]k

)

≤ (1 − λ) log Cγ

(
Q(1)

)
+ λ log Cγ

(
Q(2)

)
+ ε

for all k ∈ {1, 2, . . . , K}. Here we have used (10) and the

assumption that log γ(Qk) is convex with respect to Qk and

Ik

(
es

)
/[es]k is log-convex with respect to s. It follows that

log Cγ

(
Q(λ)

)
= inf

s∈R
K
+

(
max

1≤k≤K

γk(λ)Ik

(
es(λ)

)
[
es(λ)

]
k

)

≤ (1 − λ) log Cγ(Q(1)) + λ log Cγ(Q(2)) + ε.
(11)

This holds for any ε > 0 and the left-hand side of (11) does

not depend on ε. Thus Cγ(Q) is log-convex. �

Thm 3. Let Q(0) and Q(1) be feasible points. From The-

orem 2 it is clear that 1 ≥ Cγ

(
Q(λ)

)
, thus, all Q(λ) are

feasible and achieved by optimal power allocations p(λ) :=
popt(Q(λ)) characterized by pk(λ) = γk(λ)Ik

(
p̄(λ)

)
, 1 ≤

k ≤ K. Let γk(λ) := γ
(
Qk(λ)

)
. Exploiting the log-

convexity of γ and Ik(p̄) we have

pk(λ) = γk(λ)Ik(p̄
(
λ)

)

≤ (
γk(0)

)(1−λ)(
γk(1)

)λ(Ik

(
p̄(0)

))(1−λ)(Ik

(
p̄(1)

))λ

=
(
γk(0)Ik

(
p̄(0)

))(1−λ)(
γk(1)Ik

(
p̄(1)

))λ

=
(
pk(0)

)(1−λ)(
pk(1)

)λ
,

and thus log pk(λ) ≤ (1 − λ) log pk(0) + λ log pk(1). �

Thm 4. Let Q(0) and Q(1) be feasible points and let Q(λ)
and the associated optimizers p(λ) be defined as before.

Consider vectors p′(λ) which fulfill log p′k(λ) = (1−λ) log pk(0)+
λ log pk(1). We have Pmin

(
Q(λ)

)
=

∑
k pk(λ), thus

Pmin

(
Q(λ)

) ≤
∑

k

p′k(λ) =
∑

k

(
pk(0)

)(1−λ)(
pk(1)

)λ

≤ (∑
k

pk(0)
)(1−λ)(∑

k

pk(1)
)λ

,

where the last step follows from the Hölder inequality. Thus,

log Pmin

(
Q(λ)

) ≤ (1−λ) log Pmin(Q(0))+λ log Pmin(Q(1)) .

In [8] it was shown that for functions γ(Q) = eQ and γ(Q) =
1/Q, the inequality is strict. �
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