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ABSTRACT

This paper presents a method for enhancing wireless ARQ sys-
tem performance by combining packet retransmissions through
frequency-selective channels. As a measure of system performance,
we derive the total mutual information (or channel capacity) pro-
vided by multiple transmissions of a packet through different chan-
nels. Retransmissions are uniquely linear precoded and/or trun-
cated in relation to the original transmission. With the objective of
maximizing total throughput, optimal linear precoders are devel-
oped for zero-padded packet transmissions. These precoders ef-
fectively implement power loading with the right singular vectors
of the original transmission channel serving as basis vectors. Sim-
ulation results validate the increase the overall mutual information
and throughput from optimized precoding.

1. INTRODUCTION

In practical packet switched wireless systems, critical figures of
merit for communication effectiveness often include low frame er-
ror rates (FER) and high data throughputs to its end users. The
effective handling and reduction of packet retransmissions is vital
in meeting these needs. Generally for systems with retransmission
capabilities, if errors remain (possibly after error correction) in de-
modulating a data packet, a request for retransmission is made to
the transmitter. As a result, the development of Automatic Repeat
reQuest (ARQ) protocols has been the subject of much research
at the network and physical layers. A general discussion of ARQ
systems from a coding perspective is provided in [1].

In most ARQ protocol designs, improvements in bit error rates
and throughputs are the primary goals. A related objective to min-
imizing bit error rate is the maximization of mutual information,
or channel capacity. We now take a different perspective on packet
retransmissions, namely the gain in mutual information provided
by precoding retransmissions through ISI channels. Maximizing
the mutual information of single block transmissions through ISI
channels has been the objective of several works. Dhahir and
Cioffi developed realizable precoding filters using this criterion [2].
Scaglione et al. similarly studied the use of transmitter and re-
ceiver filterbanks to maximize information rates [3]. Dhahir and
Diggavi later investigated optimizing the guard sequences that sep-
arate consecutive information blocks [4].

In this paper, we seek to maximize precoding gains, in terms
of input/output mutual information obtained, when packet retrans-
missions are made. We begin by first modelling multiple transmis-
sions of a packet through ISI channels (an FIR filter) with zero-
padding between consecutive packets. Unique linear precoding of
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each retransmitted packet is incorporated into the model. Next, the
total channel capacity over all � transmissions of a packet is for-
mulated. A discussion of a procedure to find the optimal precoder
for each retransmission follows. We conclude with a set of simula-
tions and a presentation of results, indicating that precoding each
retransmission produces a significant increase in data throughput.

2. SYSTEM MODEL

We begin with a packet of � symbols denoted by the vector � �� � � 	 
 
 
 	 � � � 
. This packet is transmitted over a linear channel�

and corrupted by noise � , with the receiver obtaining a vector� � � � � � . One frequent example of a linear channel uses
our first model of a frequency-selective channel, with an FIR filter
whose coefficients are � � � � � 	 
 
 
 	 � � � 

. The matrix
�

is a� � � � � � � � � Toeplitz matrix defined as

� �

�����������������
�

� � � 
 
 
 
 
 
 
 
 
 �
. . .

. . .
. . .� � 
 
 
 � � � 
 
 
 ...� � � 
 
 
 � � . . .

...
. . .

. . .
�� 
 
 
 � � � 
 
 
 � �

...
. . .

. . .� 
 
 
 
 
 
 
 
 
 � � �

�                 
!



(1)

Each transmitted packet � is followed by a guard sequence of at
least � � � zeros (zero-padding) to eliminate the effect of inter-
packet interference. Given this definition, both � and � are vectors
of length � � � � � . The noise vector � is assumed to be white
and Gaussian with " # � $ % � & � ' � ( ) � 	 * +, - � & � ' � � .

3. PRECODING PACKET RETRANSMISSIONS

We expand our original model to include packet retransmissions,
concentrating specifically on zero-padded transmissions. In en-
hancing the existing diversity over all transmissions of the packet,
pre-processing or linear precoding of retransmissions is included.
Moreover, truncation (puncturing) is incorporated, where the size
of the retransmitted packet is smaller than that of the original trans-
mission. Fig. 1 illustrates several precoded transmissions of � , a
packet of � message symbols, where the . / 0 received transmis-
sion is � 1 � � 1 2 1 � � � 1 . The matrix 2 1 is a � 1 � �
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Fig. 1. Block diagram of multiple precoded transmissions of a
packet through frequency-selective channels.

precoder where � � � � for bandwidth conservation in retrans-
mission. Thus, � � represents the pre-processing and/or trunca-
tion of the � � � transmission. By default, � � � � and � � � � 	
for the initial transmission. The precoder � � is constrained by� � � � � � �� � � � � , so as to not amplify the transmit power. The
 � � � �  � � � � � channel matrix

� � represents the channel� � . All � channels are assumed to have length � and unit en-
ergy, but can be distinct (i.e. � � �� � � �� � � � �� � � ). Finally, the
vectors � � and � � have length � � � �  � , with � � � � � � � � �
independent noise vectors with variance

� �� . Overall, the vector of
received samples � is defined as

� �
����
�

� �� �
...� �

� ���
 �

����
�

� �� � � �
...� � � �

� ���
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����
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� �
� �
...� �

� ���
 �

(2)

� 	 ! � � �
With the above model, two coupled issues naturally arise. First,

the optimal precoders � � � � � � � � � must be determined. Second,
a criterion for optimality has to be defined. While traditional mea-
sures like BER or receiver SNR are valid, we intend to discuss a
different, information-theoretic approach. We define our criterion
to be the channel capacity (mutual information) provided over all� transmissions, with the goal of maximization. In other words,
optimality is defined as selecting � � � � � � � � � to maximize the
mutual information 
 
 � � ! � between � and ! .

In finding the optimal precoders, consideration of the ARQ
mechanism is required. When the � � � transmission is made, us-
ing the precoder � � , it is made with the intention that future trans-
missions should not be necessary. Thus, the design of � � should
not consider � � " � � � � � � � � . An iterative approach to finding pre-
coders is preferred, where � � is first designed to maximize capac-
ity for � � � , then �  is chosen to maximize capacity for � � �
with � � already designed, etc. Before discussing precoder design,
we first formulate the channel capacity over � transmissions.

4. OVERALL CHANNEL CAPACITY

Dhahir and Cioffi developed mutual information expressions for
block or packet transmissions through ISI channels [2]. We extend

some of their results to the model outlined in (2). Given that the
noise � and data ! are Gaussian, the mutual information is


 
 � � ! � � � � � � � � 
 � # ��� � � � � � # ��� � � �
where

� � � � � � � � � � and
� � � � � � � � � � are the auto-

correlation matrices of the received signal and noise, respectively.
The base of the logarithm is arbitrary; a base of two is typically
used to express the mutual information in bits. Using (2), the re-
ceived autocorrelation becomes� � � � 	 � � � 	 � � � � � �
with

� � � � � � ! ! � � . We assume the signal and noise are white,
with correlation matrices

� � � � � �� � 	
,

� � � � � � � �� � 	 � " $ # �
,

and
� � � � � � % & 	 � " $ # � ' ( & 	 � " $ # � '

for � �� � . We also de-
fine the SNR � � � �� � � �� . Thus,


 
 � � ! � � � � � � � � 
 � 	 	 � � � � �
(3)� � � � � � � 
 � 	 � 	 � � 	 � �
(4)

Expanding the matrix 	 leads to an expanded form of 
 
 � � ! � ,
� � � � � � � � 	 � � � � � � � � � � � ! � � �� � �� � � � � " �

(5)

5. OPTIMAL RETRANSMISSION PRECODING

In developing a method for obtaining the optimal precoder(s), we
start with � � � and work toward obtaining the optimal � � .
Using the singular value decomposition (SVD), we define

� � �# � $ � % �� with
# � a


 � � � �  � � � � � unitary matrix
and % � being a � � � � � unitary matrix. Generally

# � is a
 � � � �  � � � 
 � � � �  � � matrix, but the rank (and the
number of singular values) of

� � is � � . Hence, the last �  �
columns of

# � become unnecessary. The matrix $ � is a � � �� � diagonal matrix whose diagonal elements are the � � singular
values

� � ) � * � � � � � � � ) � � *
of

� � . We assume that the singular
values are real numbers that are ordered from largest to smallest,
and the singular vectors of

# � and % � are ordered accordingly.
The channel capacity with � � � then becomes

� � � � � � & � 	 � � % � $ � � % � � � � � �� % � $ �� % �� � � ' �
(6)

With % � % � � � � ( and � � � 
 % � � � � � � 
 % � � � � � , (6) becomes

� � � � � � & � 	 � � $ � � � � % � � � �� % � $ �� % �� � � % � ' �
(7)

Maximizing (7) is fairly simple as Hadamard’s matrix inequality
indicates that the determinant is maximized when its matrix argu-
ment is diagonalized [5]. However, we have a power constraint� � � � � � �� � � � � , and one can construct simple cases where
the maximizing matrix argument is not diagonal. Fortunately, we
have constructed a proof that returns us to the intuitive solution of
diagonalizing the matrix argument [6].

The matrix of interest in (7) is thus diagonalized when� � � % � $ ) � % � � �
(8)

where $ ) � is a � � � � diagonal matrix, with the singular values� ) � ) � * � � � � � � ) � ) � � *
denoting the diagonal elements. Note that
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this definition of � � is the singular value decomposition of � � .
The channel capacity then simplifies to

��
� � � � � � � � � � � �� � � � � �

� ��
� � � � � � � � �

� �� � � � � �� � � � ��
� � � �� � � � 	 	

(9)

The channel capacity is maximized when the second summa-
tion in (9) is maximized. The energy constraint reduces to


 � � � � � � � 

� ��

� � �
� �� � � � � 
 � � �

maintaining the proper SNR. The above mentioned proof also in-
dicates the proper pairing of the � � singular values of

 � with � �
of the � singular values of

 �
. The smallest singular value of

 �
is paired with the largest singular value of

 � , the second smallest
with the second largest, etc.

This singular value pairing aligns the weakest singular vector
of

 �
with the strongest singular vector of

 � , which is intuitively
gratifying. The pairing of singular vectors and values is obtained
through the function � � � � �

, which assigns the
� � � singular vec-

tor/value of
 � to

� � � � � � � � � singular vector/value of
 �

. In this
case, � � � � � 
 � � � � � � � � 
 � � � � � 	 	 	 � � � � � � � 
 � . Addition-
ally, � � is an � � � � matrix representation of � � � � �

; in each row�
, column element � � � � �

is unity and the remaining elements are
zero. The optimal precoder is now

� � 
 � � � � � � � �  � �

and the resulting channel capacity is

� � � � � 
 � � � � � � � � � � � � � � � � � � �� � � � � � � �

or ��
� � � � � � � � � � � �� � � � � �

� ��
� � � � � � � � �

� �� � � � � �� � � � ��
� � � �� � � � � � � � 	 	

Our optimization criterion is

� � 	
 � � � �  � � � � � 
 � � � � � 
� ��

� � � � � � � � �
� �� � � � � �� � � � ��

� � � �� � � � � � � � 	 �
(10)

subject to the constraints� ��
� � �

� �� � � � � 
 � � � � � � � � � � � � � � � � � � � � � � � 	
(11)

This is a highly nonlinear optimization, particularly due to the re-
quirement that the singular values be real. Fortunately, various
quadratic programming algorithms may be used to solve (10). As
an alternative, we propose relaxing the non-negativity constraints
and using a Lagrange multiplier,� ��

� � � � � � � � �
� �� � � � � �� � � � ��

� � � �� � � � � � � � 	 � � � � ��
� � �

� �� � � � � � � � 	 	
(12)

Solving (12) leads to

� �� � � � � 
 � �
�

� � � �� � � � � � � �
� �� � � � � �

� �

� ��
� � �

�
� � � �� � � � � � � �

� �� � � � �

This solution generally produces some negative values for
� �� � � � �

,
which violates the real-valued constraint. Let � denote the in-
dices of these negative values, with � � denoting the indices of the
non-negative singular values. By setting

� �� � � � � 
 � � � � � ,
the real-valued constraint is satisfied, but the energy constraint
is violated. To satisfy the energy constraint, we recompute � 
� � � � � � �� � � � �

and set
� �� � � � � 
 � � � �� � � � � � � for

� � � � . Us-
ing this simpler solution provides results very near those produced
by quadratic programming.

Overall, the optimal precoder effectively aligns the strongest
� � right singular vectors of

 � to the weakest � � right singular
vectors of

 �
. Additionally, the matrix � � � is a power loading

mechanism that attempts to alleviate the smaller singular values
of

 �
by using the larger singular values of

 � . This is similar
to “water-filling” or power loading for discrete multitone (DMT)
modulations [5, 7]. One can relate DMT subcarriers with the right
singular vectors of

 �
.

Precoders for � � � are found using the same method. As
an example, we consider finding the precoder � � . With � � opti-
mized, the channel capacity for � 
 � is similar to (8),

� � � � � 
 � � � � � �� � � � � �  � � � � � � �� � � � � � � � �

with
�� � � 
 � � � � � � � � � � � � � � � �� � � 	

The optimal precoder � � 
 � � � �  � � � �
has the same form as� � , and its singular values are determined similarly, using pair-

ing function � � � � �
and � � � � pairing matrix � � . The pairing

function assigns the largest singular value of
 � (

� � � � � �
) to the

smallest singular value in !� �
, the second largest to the second

smallest, etc.
In general, the optimal precoder � � is

� � 
 � � � � " � � � � �

with pairing function � � � � �
and � � � � pairing matrix # � , and

the singular values
� � " are determined by

� � 	
 � " � �  � � � � � 
 � " � � " 
� "�

� � � � � � � � �
� �� � � � � �� " � � �

�
� � �� �� � � � � � � � 	 �

with
� � " constrained as

� � � is in (11), and where �� �� � � �
are the

diagonal elements of

�� � � 
 � � � �
� � ��

� � � � �� � � � � � �� � � � � � 	

6. RESULTS

To illustrate the value of linear precoding, specifically the align-
ment of singular values, we present a simple example with � 
 �
and � 
 $ �

symbols. The channels of interest in this example are

� � 
 � � 	 � � % � 	 & ' � 	 ' ( ( � 	 & ' � 	 � � % � �

� � 
 � � 	 � � % � 	 � � % � 	 & ' � 	 & ' � 	 ' ( ( � � 	

Fig. 2 contains the aligned sets of singular values
� �

and
� � of the

transmission channels and the set of precoder singular values
� � �

for � � 
 $ �
. It illustrates the pairing of

� �
and

� � values and the
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Fig. 2. Singular value alignments for precoding example.

distribution of the precoder singular values. Clearly, the precoder
energy tends to remedy the weakest singular vectors of

� �
.

We next present results from simulations of the effectiveness
of precoding retransmissions. Three types of precoding are con-
sidered: the optimal precoder, no precoder, and an interleaver. The
interleaver randomly chooses � � of the � message symbols for
transmission. For all test cases, we compare situations where the
channel either varies ( � � �� � � �� � � � �� � � ), or remains identi-
cal ( � � � � � � � � � � � � ) when retransmissions occur.

A maximum of four transmissions of a packet are allowed and
we consider � � � � � � �

. When dealing with the � 	 
 trans-
mission, we increment the variable � � until � � � � to eval-
uate the effects of truncating retransmissions. While considering
the � 	 
 transmission, the previous � � � transmissions are op-
timally precoded with  � � � � � �  � � �

and un-truncated ( � � �
� � � � � � � � � � ). With each packet, � � is incremented un-
til � � � � , then � � is incremented until � � � � , and � �

is incremented until � � � � . At each increment, the optimal
precoder  � is determined and the mutual information produced
from the three precoding strategies, with and without channel vari-
ation between retransmissions, are computed. For a given SNR
and channel length � , we perform Monte Carlo simulations over
100 packets, with a unique channel � �

for each packet. Figs. 3
contain plots of the average mutual information per message sym-
bol versus throughput at SNR of 20 dB and � � � . We define the
throughput at any instance of � � as � � � � � � � � � � � � � .

The optimal precoders always provide substantial improve-
ments in mutual information, providing the same improvements
regardless of channel variation between retransmissions. Closer
inspection of the results leads to some interesting observations.
Interleaving is beneficial when the channel does not vary, but in-
effective when the channel does vary. Also, channel length seems
to have little effect. Additionally, the various throughput gains
are independent of SNR. Finally, when no precoding is performed,
channel variations provide an increase in mutual information. The
independence of the retransmissions is a source of diversity.
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Fig. 3. Capacity per message symbol achieved using various pre-
coding strategies at SNR of 20dB with channel lengths � � � .

7. CONCLUDING REMARKS

This paper presents a method for improving system performance
when packet retransmissions are required in frequency-selective
channels. Using total channel capacity as the performance objec-
tive, a process was developed to obtain linear precoders that max-
imize the mutual information available at the receiver. Using the
singular vectors of the original transmission channel as basis vec-
tors, optimal precoding bears many similarities to power loading.
Simulation results indicate that significant gains in capacity and/or
data throughput are provided with optimized precoding.
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