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ABSTRACT
We consider the problem of multiuser opportunistic fair schedul-
ing (OFS) in downlink MISO systems employing beamforming.
OFS is performed on a per scheduling interval basis to achieve
fair bandwidth allocation. Transmit beamforming provides TDMA
systems with the capability of supporting multiple concurrent
transmissions. Since the optimal beamforming scheme can be cal-
culated for a given subset of users, the scheduling problem then
refers to the optimal user subset selection to maximize the system
throughput subject to certain constraints. We propose two practical
multiuser schedulers, and then present discrete stochastic approxi-
mation algorithms to adaptively select a better user subset. We also
consider scenarios of time-varying channels where the algorithm
can track the time-varying optimum. We present results to show
the performance of the proposed algorithms in terms of the fast
convergence, the time-varying tracking capability and the fairness.

1. INTRODUCTION

Opportunistic fair scheduling (OFS) is an important technique in
wireless networks, and it aims at balancing two conflicting goals,
fairness and resource utilization [1, 2]. Several approaches have
been proposed in current literature. Based on the utility-based
single-user scheduler [3], a general methodology and an multiuser
scheduler are proposed in [2] for CDMA systems. Note that, in-
stead of incorporating the physical-layer constraints and imple-
mentation details, perfect channel knowledge and simplified mod-
els for physical-layer are assumed in existing works [2, 3].

Also note that only single-user scheduler has been considered
for TDMA systems in current literature [3, 4], which was moti-
vated from an information-theoretic result on the single transmit
antenna model [4]. It has been pointed out in [4] that multiple
transmit antennas provide the potential for multiuser scheduling in
downlink MISO broadcasting systems, which is an interesting and
open problem. In [4], a multiuser scheduler is also discussed from
the information-theoretic point of view. In this paper, we consider
the multiuser scheduling problem for downlink MISO systems em-
ploying transmit beamforming from the viewpoint of practical sys-
tems. Specifically, the downlink multiuser beamforming is treated
as the physical-layer implementation, which has been extensively
studied in [5, 6]. We can also draw analogy between the multiuser
schedulers treated in this paper and that in [2] for CDMA systems.
As pointed out in [6], many results found in synchronous CDMA
systems can be transformed to the scenario of the downlink mul-
tiuser beamforming. Then the multiuser OFS with beamforming
treated in this paper is analogous to that for CDMA systems.

Since the optimal beamforming scheme can be calculated for
a given user subset, the multiuser OFS problem then refers to the

optimal subset selection at each interval to maximize the system
throughput under certain constraints. Straightforward implemen-
tation of the selection suffers from several practical problems [7],
e.g., the high complexity, the availability of perfect CSI, and the
time-varying optimum tracking. In this paper, we propose dis-
crete stochastic approximation (DSA) algorithms to achieve the
subset selection, based on the stochastic optimization techniques
in recent literature [8, 9]. The rational behind these algorithms is
exactly the same as that behind traditional adaptive filtering algo-
rithms, where computation is distributed over time. Specifically,
we only make simple update at each time, and the performance
gets improved as the algorithm iterates. Note that the solutions
here take discrete values. The algorithm is computational efficient
due to its self-learning property, i.e., it spends more time at the
optimum than at any others. Moreover, the algorithm can adopt a
fixed step-size which acts as a forgetting factor, so that it can track
the time-varying optimum. The motivation here is again the same
as that in the continuous adaptive filtering algorithms in non-static
environments, where slow varying dynamics can be tracked.

The remainder of this paper is organized as follows. In Sec-
tion 2, the multiuser OFS framework with transmit beamforming is
described, and the corresponding discrete stochastic optimization
problem is formulated. Section 3 presents two practical sched-
ulers, and then proposes the DSA algorithms. Simulation results
are given in Section 4; and Section 5 contains the conclusions.

2. SYSTEM DESCRIPTIONS

2.1. Multiuser Downlink Beamforming

In this paper, the downlink MISO system employing transmit
beamforming is treated as the physical-layer implementation. Sup-
pose that there are K active users and T transmit antennas at the
base station. Then the received SINR at mobile k is given by [5, 6]

γk =
PkuH

k Qkuk
∑

j �=k PjuH
j Qkuj+η

, where Pk, uk and Qk � E{hH
k hk}

is the transmit power, the beamformer and the channel covarince
matrix of user k, respectively; η is the AWGN power level. Define
U � [u1, · · · ,uK ] and p � [P1, · · · , PK ]. Denote ρ as the total
transmit power constraint, and {γmin

k }k as the minimum SINR re-
quests. Then the SINR balancing problem is formulated as [5, 6]:

max
U ,p

min
1≤k≤K

γk(U ,p)

γmin
k

, subject to

K∑

k=1

Pk ≤ ρ. (1)

The optimal solution for (1) has been well studied in [5, 6].
Remark: In this paper, the throughput evaluation depends on

the physical-layer implementation, i.e., the downlink multiuser
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beamforming scheme [5, 6] which is the state-of-the-art for this
scenario. However, our proposed multiuser scheduling framework
does NOT depend on any particular physical-layer scheme.

2.2. Multiuser Opportunistic Fair Scheduling Framework

Fig. 1 shows the general OFS framework [2], where the scheduler
chooses a user subset to maximize the weighted system through-
put; the controller guarantees the fairness by adjusting the weights.

Multiuser
Scheduler

Controller

incoming flows
1,2,...,N

Fairness
Requests

x(i)
w(i)

channel inform.

Decision
Memory

x(j), j = i,i-1,......

Time
control updates

scheduling updates...... ......

Fig. 1. Generalized architecture of multiuser OFS.

Suppose that there are totally N users in the system. At each
scheduling interval i, the inputs to the scheduler are the data flows,
the channel states, and the weights w(i) = [w1(i), · · · , wN (i)]T .
Denote θ as a user subset, |θ| as the number of users in θ, Θ be the
set of all possible subsets,Qθ(i) as the channel set of the users in
θ, and x(i) = [X1(i), · · · , XN (i)]T ≥ 0 as the rates of the users.
Define the objective function Φ(Qθ(i)) �

∑
n∈θ wn(i)Xn(i) as

the weighted system throughput for θ. Then the user subset selec-
tion is formulated as the following discrete optimization problem

θ∗(i) = arg max
θ∈Θ

Φ(Qθ(i)) = max
θ∈Θ

∑

n∈θ

wn(i)Xn(i), (2)

where θ∗(i) denotes the optimal user subset for the interval i.
For the controller, the inputs at each control interval are the

users’ throughput priorities
−→
φ = [φ1, · · · , φN ]T and x(i). The

deterministic fairness constraint is given by [2] φ1
E{X1(i)} = · · · =

φN
E{XN (i)} . At each control interval, the controller updates w(i)

using
−→
φ and x(i) [2, 3]. Specifically, define y(i,w(i)) �−→

φ
∑N

j=1 φj
− x(i,w(i))
∑N

j=1 Xj(i,w(i))
, where x(i,w(i)) is the decision x(i)

for given w(i). Let ν(i) = 1/i be the step-size. To guarantee the
fairness constraint,w(i) should then be updated as [2]

w(i + 1) = w(i) + ν(i)y(i,w(i)). (3)

Remark: The scheduling interval is much smaller than the
control interval, i.e., there are many scheduling updates [given
by (2)] between each two consecutive control updates [(3)]. The
scheduling process is an iterative one (cf. Sec. 3), during which
w(i) is fixed so that the algorithm can converge to the optimum.

2.3. Discrete Stochastic Optimization Formulation

Assume that Qn(i) keeps invariant during each scheduling inter-
val. For the scenario of fixed channels,Qn(i) is fixed for different

scheduling intervals; for the scenario of time-varying channels, the
AR model will be used later to describe the dynamic of Qn(i).
Since Qθ(i) and w(i) remain fixed within each interval i, here-
after we drop the index i. Note that in practice,Qθ is estimated and
therefore noisy. Denote {Q̂θ(m), m = 1, 2, · · ·} as a sequence
of the estimates forQθ . For each Q̂θ(m), we can compute the op-
timal U and p as discussed in Section 2.1, and the corresponding
noisy estimate of Φ(Qθ) at the m-th iteration, denoted as φ(m, θ).
Then, we obtain the sequence {φ(m, θ), m = 1, 2, · · ·} for the
fixed w. If each φ(m, θ) is an unbiased estimate of Φ(Qθ), the
discrete optimization problem (2) can then be reformulated as the
following discrete stochastic optimization problem

θ∗ = arg max
θ∈Θ

Φ(Qθ) = arg max
θ∈Θ
E{φ(m, θ)}. (4)

3. ADAPTIVE MULTIUSER SCHEDULING PROCESS

3.1. Practical Multiuser Schedulers

Given a particular user subset θ andQθ , the optimal beamforming
scheme can be calculated [5, 6]. Denote α(θ) as the corresponding
SINR ratio. Then the achievable rate for user n ∈ θ is given by
Xn(θ) = log(1 + γmin

n α(θ)). We next define two practical mul-
tiuser schedulers, i.e., two forms of the objective function Φ(Qθ).

Scheduler I: fixed-size user subset without rate requirement
Scheduler I treats the candidate θ with fixed size K and with-

out SINR threshold requirement. Then the size of the whole solu-
tion space is |Θ| = N

K
, and the Φ(Qθ) is defined as

Φ(Qθ) �
∑

n∈θ

wn log(1 + γmin
n α(θ)), θ ∈ Θ. (5)

Scheduler I is defined from the practical concerns as follows.
Note that if certain SINR thresholds are required, then only the
subsets satisfying α(θ) ≥ 1 can be viewed as the possible candi-
date in Θ; if no SINR threshold exists, any user subset is the possi-
ble candidate. Scheduler I is suitable for applications which have
no strict rate requirement for individual users, e.g., image com-
munications. Also note that to achieve all the degrees of freedom
of the channel, the size of the user subset should be variable, and
thus, |Θ| =

∑
|θ|

N
|θ| is tremendous. The fixed-size constraint

can evidently reduce the implementation complexity. Therefore,
Scheduler I can be viewed as a sub-optimal multiuser scheduler to
approximately achieve all degree of freedom of MISO channels.

Scheduler II: variable-size user subset with rate requirement
Scheduler II treats the candidate θ with certain SINR thresh-

old requirement and variable size which is only upper bound by
K, i.e., |Θ| =

∑K
k=1

N
k

. Scheduler II maximizes the total
throughput and the number of simultaneous transmissions, subject
to certain {γmin

n }. Define Ψ(θ) �∑n∈θ wn log(1 + γmin
n α(θ)).

Scheduler II is then defined via the difference ∆Φ = Φ(Qθ1
) −

Φ(Qθ2
) between the two subsets θ1 and θ2 as follows:

∆Φ = (Ψ(θ1) − Ψ(θ2)) I{|θ1| = |θ2|, α(θ1) ≥ 1, α(θ2) ≥ 1}
+(|θ1| − |θ2|) I{|θ1| �= |θ2|, α(θ1) ≥ 1, α(θ2) ≥ 1}

+I{α(θ1) ≥ 1, α(θ2) < 1} − I{α(θ1) < 1, α(θ2) ≥ 1}. (6)

The first two items in (6) indicate the cases that both of the two user
subsets satisfy {γmin

n }, where the first one implies that the subset
with higher sum throughput is selected when the two subsets have
the same size; and the second one implies that the scheduler prefers

III - 538

➡ ➡



to select the subset with larger sizes. The latter two items in (6)
indicate the cases of only one subset satisfying {γmin

n }.
Scheduler II also arises from some practical concerns. Certain

SINR threshold is required in cellular voice systems, where the
throughput can be roughly denoted by the number of active users.

3.2. Discrete Stochastic Approximation Algorithm

One method for solving (4) is the exhaustive search of all possi-
ble user subsets, which can in principle find the optimum solution.
However, it is highly inefficient in the sense that most computa-
tions are useless and only those corresponding to the optimal one
are eventually useful. Moreover, if the channels are time-varying,
such scheme cannot track the time-varying optimal user subset.
We now present the discrete stochastic approximation algorithm
for solving (4) [9]. which has high computational efficiency in
the sense that most of the computational cost is spent close to θ∗.
We use the unit vectors {e1, · · · , e|Θ|} to denote all |Θ| possible
subsets. Denote θ(m) as the subset visited at the m-th iteration.
We map the subset sequence {θ(m), m = 1, 2, · · ·} to the unit
vector sequence {D(m), m = 1, 2, · · ·}, where D(m) = ej if
θ(m) = θj . At each iteration m, the algorithm updates the state oc-
cupation probability �π(m) = [π(m, 1), · · · , π(m, |Θ|)]T , where
π(m, j) ∈ [0, 1] and

∑|Θ|
j=1 π(m, j) = 1. The discrete stochastic

approximation algorithm is then summarized as follows.
Algorithm 1 [User subset selection]

(a) Initialization: m ⇐ 1; randomly select θ(m) ∈ Θ,
and θ̂(m) ⇐ θ(m); set �π(m) by π(m, θ(m)) = 1, and
π(m, θ) = 0 for all θ �= θ(m).

(b) Sampling and evaluation: Given θ(m), obtain
Q̂θ(m)(m); calculate φ(m, θ(m)); uniformly choose
θ̃(m) ∈ Θ \ θ(m); compute φ(m, θ̃(m)).

(c) Acceptance: If φ(m, θ̃(m)) > φ(m, θ(m)), then set
θ(m+1) = θ̃(m); otherwise set θ(m+1) = θ(m).

(d) Update the state occupation probabilities: �π(m+1) =
�π(m)+µ(m+1)[D(m+1)−�π(m)], where µ(m) = 1

m
.

(e) Update the estimate of the optimizer: If π(m +

1, θ(m+1)) > π(m+1, θ̂(m)), then set θ̂(m+1) = θ(m+1);
otherwise set θ̂(m+1) = θ̂(m).

(f) m ⇐ m + 1, and go to step (b).

The sequence {θ(m), m = 1, 2, · · ·} is a Markov chain on the
state space Θ, and in general is not expected to converge. In Step
(d), �π(m) = [π(m, 1), · · · , π(m, |Θ|)]T denotes the empirical
state occupation probability of the Markov chain at the m-th itera-
tion, and thus, Step (e) is equivalent to θ̂(m) = arg maxθ �π(m, θ).
Hence the algorithm essentially chooses the state most frequently
visited by the Markov chain. The sequence {θ̂(m), m = 1, 2, · · ·}
contains the estimates of θ∗. Under certain conditions, θ̂(m) → θ∗

almost surely as m → ∞, or equivalently, the Markov chain
spends more time in θ∗ than in any other state.

Remark: It remains an open problem to analytically verify
the convergence of user subset selection algorithms treated in this
paper, though numerical results indicate that it seems to hold.

3.3. Adaptive Algorithm for Time-varying Channels

So far we have assumed that the channels are static and therefore
for fixed w, the optimal user subset θ∗ is time-invariant. Under

the static channel condition, a decreasing step-size is employed in
Algorithm 1 and (3). With such an approach, the method gradually
becomes more and more conservative as the iteration number in-
creases. Whereas, in the time-varying channel case, we need such
a step-size that moving away from a state is permitted when the
optimal user subset changes. Hence, Step (d) in Algorithm 1 is
replaced by �π(m + 1) = �π(m) + µ[D(m + 1) − �π(m)], where
µ is a fixed step-size satisfying 0 < µ ≤ 1. The fixed step-size
introduces an exponential forgetting factor of the past occupation
probabilities and allows to track the slowly time-varying optimum.

4. SIMULATION RESULTS

The simulation conditions are as follows. The base station em-
ploys T = 4 transmit antennas; there are N = 8 users in the
system; the power constraint is ρ = 1; the noise level is η = 0.05.
For Scheduler I, |θ| = 4; for Scheduler II, |θ| ≤ 3 and γmin

n = 6.
The channel estimate is generated by Q̂θ(m) = Qθ + �Qθ(m),
where �Qθ(m) contains i.i.d. �Ωi,j ∼ N (0, 0.05).

Optimal User Subset Selection in Static Channels
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Fig. 2. The total rate of the chosen user subsets versus the iteration
number: Scheduler I, fixed channel case.

0 20 40 60 80 100 120 140 160 180 200
11.5

12

12.5

13

13.5

14

Iteration number,  m

T
ot

al
 r

at
e 

 (
bi

ts
/s

/H
z)

Scheduler II,    static channel

Optimal subset
Chosen subset, avg. over 100 runs
Chosen subset, single run

Fig. 3. The total rate of the chosen user subsets versus the iteration
number: Scheduler II, fixed channel case.

We first show the effectiveness of Algorithm 1 in terms of
throughput maximization with fast convergence. The weights w
are all set as 1. The channels are randomly generated and fixed
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for all simulation runs. Figure 2 shows the total throughput versus
the iteration number for Scheduler I. The result in a single simu-
lation run and that averaged over 100 runs, together with the op-
timal throughput obtained via an exhaustive search, are all shown.
Figure 3 shows the similar results for Scheduler II. It is seen that
Algorithm 1 can effectively find the optimum, and it can quickly
lock on a subset with the performance close to the optimal one.

Tracking Capability of Time-varying Optimal User Subset

We next show the tracking capability of the algorithm in time-
varying channels. Suppose the channels keep fixed within τ =
200 slots. The first order AR model over τ is adopted to describe
the channel dynamic: Qn(t) = β1Qn(t − 1) + β2ε̃n(t), where
ε̃n(t) contains i.i.d. ε̃i,j(t) ∼ N (0, 1); β2 = (1 − β2

1)1/2 and
β1 = 0.9. The step size is fixed as µ = 0.02. w are all set as 1.
Figure 4 shows the results for Scheduler I over a single run, where
the algorithm can closely track the time-varying optimum.
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Fig. 4. The total rate of the chosen user subsets versus the iteration
number: Scheduler I, time-varying channel case.

Fairness Guarantee

Finally, we show the system performance in terms of the fairness.
Assume that there are totally N = 5 users, which have the normal-
ized throughput priorities

−→
φ = [ 1

8
, 1

8
, 1

4
, 1

4
, 1

4
]. The time-varying

channel case is treated, where the same AR model as that in Fig. 4
is used. Note that there are 400 iterations within each interval, dur-
ing whichw(i) is kept fixed. Figure 5 shows the normalized rates
of all users versus the interval indexes for Scheduler II. It is seen
that although the rate requests for all users are not satisfied within
a short time scale, the long term fairness can be well guaranteed.

5. CONCLUSIONS

We have developed a multiuser scheduling framework for down-
link MISO beamforming systems. Multiuser downlink beamform-
ing is treated as the physical-layer implementation. The optimal
beamforming scheme can be calculated for a given user subset.
Then the multiuser scheduling problem refers to the optimum sub-
set selection at each scheduling interval to maximize the weighted
system throughput. We have developed the DSA algorithm to effi-
ciently achieve optimal subset selection. The algorithm is also able
to track the time-varying optimum when the channels vary. The al-
gorithm is iterative in nature, and we have presented two practical
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Fig. 5. The normalized throughput of all users versus the time slot
number: Scheduler II, time-varying channel case.

multiuser schedulers, with or without minimum rate constraints on
individual users. We present simulation results to demonstrate that
the algorithms can effectively find the optimal user subset with
good convergence performances, and adaptively track the time-
varying optimum in the nonstationary environments. The system
can also achieve fairness among all users over large time scales.
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