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Abstract— In this paper, we develop a differential binary
phase shift keying (BPSK) modulation scheme for wireless relay
networks composed of one source, one relay and one destination
node. The proposed scheme, referred to as the differential decode-
and-forward (DDF), utilizes the relay to assist data transmission
from the source to the destination. We derive a maximum
likelihood (ML) detector and a piece-wise linear (PL) detector
for the proposed DDF scheme. A closed-form bit error rate
(BER) expression is presented for the proposed PL detector. Both
analytical and simulation results show that the proposed DDF
scheme is capable of providing diversity gain at the destination
node over Rayleigh fading channels.

I. INTRODUCTION

Diversity provides an efficient mechanism to combat multi-

path fading in wireless communication systems, and can be

implemented in a space-time fashion. A basic premise behind

all space-time coding schemes is the availability of multiple

antennas at the transmitter. This may not be possible in some

scenarios, e.g., a peer-to-peer ad-hoc mobile network, due to

size, power and cost limitations on the mobile terminal. In such

cases, multiple spatially distributed mobile nodes, referred

to as wireless relays herein, can be exploited to assist data

transmission.

Laneman et al. [1] investigated the cooperative diversity,

and analyzed the outage capacity for the case of known

channel state information (CSI). Sendonaris et al. addressed

the achievable rates and implementation issues of user cooper-

ation diversity for the code-division multiple-access (CDMA)

systems in [2]. Coherent maximum likelihood (ML) detection

was developed in [3]. The bit error rate (BER) was derived in

[4] for the relay link. In [5], the symbol error rate was provided

for the scenario of multi-branch multi-hop configurations.

However, most of such analyses were based on the amplify-
and-forward (AF) scheme [1], where the relay simply ampli-

fies the received signals and retransmits to the destination,

and the CSI is available to the receivers. In [6], the BER

performance was studied for the non-coherent decode-and-
forward (DF) applying binary frequency shift keying (BFSK)

modulation.

Thus far, most of previous studies were focused on coherent

detection. To obviate channel estimation, we develop in this

paper a differential decode-and-forward (DDF) modulation

scheme for cooperative wireless systems and analyze its BER

performance.

II. SYSTEM MODEL

Consider a scenario depicted in Fig. 1, where a sequence

of symbols are to be transmitted from the source node S to

the destination node D. Suppose there is another relay node

R that can hear S and transmit to R. To avoid interference,

S and R use orthogonal channels for transmission, either by

time-, frequency-, or code-division multiplexing. For ease of

presentation, we assume time-division multiplexing for which

the transmission is divided into two distinct phases. During

phase-I transmission, S transmits, while R and D listen. During

phase-II transmission, S is silent, while R transmits signals to

D.
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Fig. 1. A wireless relay system.

For phase-I transmission, the information bits d(n) ∈ {±1}
at S are differentially encoded: s(n) = s(n − 1)d(n), n =
1, 2, · · · , N , where s(0) = 1 and N is the number of bits

within the frame. The received baseband signals at R and D,

respectively, are

xr(n) = hs,rs(n) + wr(n), n = 0, 1, · · · , N, (1)

xd(n) = hs,ds(n) + wd(n), n = 0, 1, · · · , N, (2)

where hs,r and hs,d are the channel coefficients, and wr(n)
and wd(n) are complex additive white Gaussian noise

(AWGN).

For phase-II transmission, relay R decodes the received

signal xr(n), and generates a unit-variance signal sr(n) that is

transmitted to destination D. The signal received at D is given

by 1

yd(n) = hr,dsr(n) + ud(n), n = 0, 1, · · · , N, (3)

1With some notation abuse, n denotes the time index for both phase-I and
phase-II transmissions.
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where hr,d and ud(n) denotes the fading and channel noise,

respectively.

For differential detection, the fading channels are assumed

(approximately) static over two bit intervals. The dependence

of the channels on time is dropped for brevity since the

detection scheme to be discussed involves signals received

over two adjacent bits. The channels are Rayleigh fading,

i.e., hi,j ∼ CN (0, σ2
i,j), (i, j) ∈ {(s, r), (s, d), (r, d)}, where

CN (µ, σ2) denotes a complex Gaussian random variable with

mean µ and variance σ2. The channel noise wr(n), wd(n) and

ud(n) are assumed independent CN (0, N0) random variables.

The instantaneous SNR between nodes i and j, denoted by

γi,j = |hi,j |2/N0, is exponentially distributed with PDF

pγi,j
(γi,j) =

1
γ̄i,j

e−γi,j/γ̄i,j , (4)

where γ̄i,j = σ2
i,j/N0 denotes the average SNR between

nodes i and j. Finally, the channel coefficients are assumed

independent of one another and also of the channel noise.

III. PROPOSED SCHEME

A. Differential Demodulation and Encoding at the Relay

At the relay, the conventional differential demodulation is

performed

d̃(n) =

{
1, �{x∗

r(n − 1)xr(n)} > 0
−1, �{x∗

r(n − 1)xr(n)} < 0
(5)

for n = 1, 2, · · · , N , where d̃(n) denotes the estimate of d(n),
�{·} denotes the real part of the argument, and (·)∗ denotes

the complex conjugate of a complex number.

Then, the encoder at the relay performs differential encod-

ing:

sr(n) = sr(n − 1)d̃(n), n = 1, 2, · · · , N, (6)

where s̃(n) ∈ {±1} denotes the actual transmitted signal from

the relay to the destination, and s̃(0) = 1.

B. Maximum Likelihood Detection at the Destination

Substituting (6) into (3), we have

yd(n) = yd(n − 1)d̃(n) + ud(n) − ud(n − 1)d̃(n). (7)

Either a correct or wrong decision may occur at the relay.

As a result, the conditional PDF of yd(n) takes the form of

Gaussian mixture:

pyd(n)(y) =(1 − ε)Φc(y; yd(n − 1)d(n), 2N0)
+ εΦc(y;−yd(n − 1)d(n), 2N0),

(8)

where Φc(y;µ, σ2) denotes the PDF of a complex Gaussian

random variable with mean µ and variance σ2, and ε = 1/(2+
2γ̄s,r) is the BER of the differential BPSK modulation over

Rayleigh fading channels. Similarly, xd(n) can be rewritten

as

xd(n) = xd(n − 1)d(n) + v(n), (9)

where v(n) � wd(n) − wd(n − 1)d(n). Clearly, we have

xd(n) ∼ CN (xd(n − 1)d(n), 2N0) conditioned on the infor-

mation bit d(n) and the previous received signal xd(n − 1).
The ML detection is shown to be:

f(t1) + t0
1
≷
−1

0, (10)

where

f(t1) = ln
(1 − ε)et1 + ε

εet1 + 1 − ε
, (11)

t1 =
q1

N0
, q1 = y∗

d(n − 1)yd(n) + yd(n − 1)y∗
d(n), (12)

t0 =
q0

N0
, q0 = x∗

d(n − 1)xd(n) + xd(n − 1)x∗
d(n). (13)

It was shown that f(t1) can be approximated by a

piecewise-linear (PL) function: [6]

f(t1) ≈ fPL(t1) �

⎧⎪⎨
⎪⎩
−T1, t1 ≤ −T1

t1, −T1 ≤ t1 ≤ T1

T1, t1 ≥ T1

(14)

where T1 = ln[(1− ε)/ε] assuming ε < 0.5. This leads to the

following PL detector:

fPL(t1) + t0
1

≷
−1

0, (15)

which is easier to implement than the ML detector (10). The

PL detector achieves similar performance to that of the ML

detector (see Section V) and admits tractable analysis.

IV. PERFORMANCE ANALYSIS

A. Average BER

Without lost of generality, we assume d(n) = 1 is transmit-

ted. A close examination of the PL detector indicates that the

error event can be represented using three mutually exclusively

events. Specifically, the conditional BER is

Pb(γs,d,γr,d) = Pr{t0 − T1 < 0|t1 < −T1, d(n) = 1}
× Pr{t1 < −T1|d(n) = 1}
+ Pr{t0 + T1 < 0|t1 > T1, d(n) = 1}
× Pr{t1 > T1|d(n) = 1}
+ Pr{t0 + t1 < 0,−T1 ≤ t1 ≤ T1|d(n) = 1}.

(16)

It is observed that t0 and t1 are mutually independent, and

t0 is of quadratic forms in complex Gaussian variables [7],we

have

Pb1(γs,d) =Pr{t0 − T1 < 0|t1 < −T1, d(n) = 1}

=1 − e−2γs,d

2

∞∑
k=0

k∑
n=0

2k−nγk
s,dΓ(k + 1 − n, T1)
k!(k − n)!

.

where the upper incomplete Gamma function is defined as

Γ(a, x) =
∫ ∞

x
e−tta−1dt. Similarly,

Pb4(γs,d) =Pr{t0 + T1 < 0|t1 > T1, d(n) = 1}

=
e−γs,d−T1

2
.
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For the probability related to the random variable t1, the

error events can be grouped into two mutually exclusive error

events: an error is made at the relay, or the relay detects the

transmitted symbol correctly. Hence, we have

Pr{t1 < −T1|d(n) = 1} = (1 − ε)Pb2(γr,d) + εPb3(γr,d),

where Pb2(γr,d) = Pr{t1 < −T1|d(n) = 1, d̃(n) = 1},

Pb3(γr,d) = Pr{t1 < −T1|d(n) = 1, d̃(n) = −1}. With the

help of [7], we have

Pb2(γr,d) =
e−γr,d−T1

2
,

Pb3(γr,d) =
e−2γr,d

2

∞∑
k=0

k∑
n=0

2k−nγk
r,dΓ(k + 1 − n, T1)
k!(k − n)!

.

Similarly,

Pr{t1 > T1|d(n) = 1} = (1−ε)Pb5(γr,d)+εPb6(γr,d), (17)

where Pb5(γr,d) = Pb3(γr,d), Pb6(γr,d) = P2(γr,d) due to the

symmetry of the PL function. The last term in (16) can be

written as

Pr{t0 + t1 < 0,−T1 ≤ t1 ≤ T1|d(n) = 1}
= (1 − ε)Pb7(γs,d, γr,d) + εPb8(γs,d, γr,d),

(18)

where Pb7(γs,d, γr,d) = Pr{t0 + t1 < 0,−T1 ≤ t1 ≤
T1|d(n) = 1, d̃(n) = 1}, Pb8(γs,d, γr,d) = Pr{t0 + t1 <
0,−T1 ≤ t1 ≤ T1|d(n) = 1, d̃(n) = −1}. Pb7 and Pb8 can

be found by integrating the joint PDF of q0 and q1 over the

constrained domain:

Pe7(γs,d, γr,d) =Pe8(γs,d, γr,d)

=
∫ N0T1

−N0T1

pq1(y)dy

∫ −y

−∞
pq0(x)dx.

(19)

Due to space constraint, we skip the derivation. Pb7(γs,d, γr,d)
and Pb8(γs,d, γr,d) are obtained as

Pb7(γs,d, γr,d) =
1
2
e−γr,d − 1

2
e−γr,d−T1 − e−2γs,d−γr,d

4

×
∞∑

k=0

k∑
n=0

k−n∑
m=0

2k−n−m−1γk
s,d

k!m!
γ(m + 1, 2T1)

+
e−γs,d−2γr,d

8

∞∑
k=0

k∑
n=0

γk
r,d

k!(k − n)!
γ(k − n + 1, 2T1),

P b8(γs,d, γr,d) =
e−2γr,d

2

∞∑
k=0

k∑
n=0

2k−nγk
r,dγ(k − n + 1, T1)
k!(k − n)!

−
( ∞∑

k=0

∞∑
i=0

k∑
n=0

i∑
j=0

i−j∑
m=0

γk
r,dγ

i
s,dγ(k − n + m + 1, 2T1)

k!(k − n)!i!m!2j+m−i

)

× e−2γs,d−2γr,d

8
+

1
8
e−γs,d−γr,d(1 − e−2T1).

where the lower incomplete gamma function is defined as

γ(a, x) =
∫ x

0
e−tta−1dt.

Collecting all the terms in (16), we have

Pb =(Pb1Pb2 + Pb3Pb4 + Pb7)(1 − ε)
+ (Pb1Pb3 + Pb2Pb4 + Pb8)ε.

(20)

The average BER for DDF is obtained by averaging Pb

across the distribution of γr,d and γs,d:

P̄b =
∫ ∞

0

∫ ∞

0

Pb(γ1, γ2)pγs,d
(γ1)pγr,d

(γ2)dγ1dγ2. (21)

A close examination of (21) reveals that the 2-dimensional

integration in (21) is separable. Using [8, Eqn. (3.351.3)], we

arrive at the following closed-form expression of the average

BER for DDF:

P̄b =(P̄b1P̄b2 + P̄b3P̄b4 + P̄b7)(1 − ε)
+ (P̄b1P̄b3 + P̄b2P̄b4 + P̄b8)ε,

(22)

where

P̄b1 = 1 − 1
2(2γ̄s,d + 1)

∞∑
k=0

k∑
n=0

2k−nγ̄k
s,dΓ(k + 1 − n, T1)

(k − n)!(2γ̄s,d + 1)k
,

P̄b2 =
1

2(γ̄r,d + 1)
e−T1 ,

P̄b3 =
1

2(2γ̄r,d + 1)

∞∑
k=0

k∑
n=0

2k−nγ̄k
r,dΓ(k + 1 − n, T1)

(k − n)!(2γ̄r,d + 1)k
,

P̄b4 =
1

2(γ̄s,d + 1)
e−T1 ,

P̄b7 =
1

2(γ̄r,d + 1)
(1 − e−T1) − 1

8(2γ̄s,d + 1)(γ̄r,d + 1)

×
∞∑

k=0

k∑
n=0

k−n∑
m=0

2k−n−mγ̄k
s,dγ(m + 1, 2T1)

m!(2γ̄s,d + 1)k

+
1

8(γ̄s,d + 1)(2γ̄r,d + 1)

∞∑
k=0

k∑
n=0

γ̄k
r,dγ(k + 1 − n, 2T1)
(k − n)!(2γ̄r,d + 1)k

,

P̄b8 =
1

2(2γ̄r,d + 1)

∞∑
k=0

k∑
n=0

2k−nγ̄k
r,dγ(k + 1 − n, T1)

(k − n)!(2γ̄r,d + 1)k

− 1
8(2γ̄s,d + 1)(2γ̄r,d + 1)

∞∑
k=0

∞∑
i=0

k∑
n=0

i∑
j=0

i−j∑
m=0

γ̄k
r,d(2γ̄s,d)iγ(k + m + 1 − n, 2T1)

(2γ̄r,d + 1)k(2γ̄s,d + 1)i(k − n)!m!2j+m

+
1

8(γ̄s,d + 1)(γ̄r,d + 1)
(1 − e−2T1).

BER given in (22) allows us to evaluate the performance of

the DDF scheme for arbitrary average SNRs (γ̄s,d, γ̄s,r, γ̄r,d).

As a result, one can exploit (22) to analyze problems like

optimal geometric locations of nodes, and optimal power

allocation strategy.
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B. Outage Probability

For DDF, we cannot employ a single instantaneous SNR at

destination D as an indicator of outage due to decision errors

at relay R. Alternatively, we can define that an outage of the

cooperative system occurs when both the direct and relay links

experience outage. Hence, the outage probability Pout is given

by

Pout = P s,d
out P s,r,d

out , (23)

where P s,d
out and P s,d

out denote the outage probability of the direct

and relay link, respectively. Specifically, P s,d
out is the probability

with which γs,d drops below threshold γth:

P s,d
out �

∫ γth

0

pγs,d
(γ)dγ = 1 − e−γth/γ̄s,d , (24)

while P s,r,d
out is the probability with which either γs,r or γr,d

drops below γth:

P s,r,d
out �P (γs,r ≤ γth ∪ γr,d ≤ γth)

=1 − e−γth(1/γ̄s,r+1/γ̄r,d).
(25)

C. Asymptotic Analysis and Diversity Order

We may find the diversity gain from the average BER in

(22) by letting the SNR approach infinity, this turns out a

tedious process. Instead, we will use the outage probability

to determine its diversity gain. Let γ̄s,r = γ̄s,d = γ̄r,d = ρ
and ρ → ∞. A first-order Taylor expansion of (24) and (25),

followed by a substitution back into (23), yields:

Pout ∝ CDDFγ
2
thρ

−2, for large ρ, (26)

where CDDF is a constant. Hence, the DDF has a diversity

order of 2.

V. NUMERICAL RESULTS

Fig. 2 plots the average BER curves for DDF applying the

PL detector (both simulation and analytical result), along with

the average BER of the non-cooperative differential BPSK. For

fair comparison, we set γ̄s,r = γ̄r,d = γ̄s,d = 0.5Eb/N0, so

that the sum of the transmitted energy from both S and R for

the cooperative system is identical to that of the conventional

system. The simulation BER of DDF with ML detection is

also shown in Fig. 2. It is seen that the PL detector performs

slightly worse than the ML detector. Overall, the analytical

BER performance for the PL detector agrees the simulation

result, and our cooperative scheme achieves cooperative di-

versity and outperforms the non-cooperative DBPSK.

Fig. 3 illustrates the outage probabilities for the proposed

and the non-cooperative schemes, where the threshold γth =
10 dB. The horizontal axis in Fig. 3 is the average SNR

normalized by γth. DDF is again seen to yield diversity gain

over the non-cooperative scheme.

VI. CONCLUSIONS

We have presented a differential BPSK modulation scheme

for wireless relay networks. Both analytical and simulation

results show that the proposed DDF scheme can provide

diversity gain to the destination when CSI is not available

at the receiver in Rayleigh fading channels.
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