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ABSTRACT

Network coding generalizes the conventional routing paradigm

by allowing nodes to mix information received on its incom-

ing links to generate information to be transmitted to other

nodes. As a result, network coding improves throughput,

resource efficiency, robustness, manageability, etc, in wired

and wireless ad hoc networks. In particular, it was estab-

lished that network coding can achieve the maximum rate

for multicasting information from a source node to multi-

ple destination nodes. The objective of this work is to show

how to achieve the aforementioned multicast capacity with

lower processing/implementation complexity than what was

proposed in the literature.

We classify the links in a network into two categories:

1) links entering relay nodes, and 2) links entering destina-

tions. We show the same multicast capacity can be achieved

by applying (non-trivial) network coding only on the links

entering relay nodes. In other words, links entering desti-

nations will only require routing, which leads to a saving in

the processing/implementation complexity. The novelty of

this work lies in a new algorithm, its proof of correctness,

and a complexity analysis.

1. INTRODUCTION
Consider the problem of information multicast, namely trans-

mitting common information from a source node s to a set

of destination nodes T , in a network represented by a di-

rected graph G = (V,E) with unit-capacity edges. Con-

ventionally, end-to-end information transmission is done by

routing, i.e., letting nodes in the network store-and-forward

information. Recently, in [1], Ahlswede et al. showed that

the multicast capacity, which is defined as the maximum

multicast rate from s to T , can be achieved with network
coding, while it cannot be achieved in general by routing.

Network coding allows a node to “mix” information, i.e.,

generate output symbols by computing certain functions of

the symbols it received.

Network coding is highly applicable to real packet net-

works. For example, previous work [2] presented a pro-

totype system for practical network coding in packet net-

works, using distributed random linear network coding with

buffering. The system achieves throughput close to capac-

ity with low delay, and is robust to random packet loss and

delay as well as to changes to network topology or capacity.

An increasingly important application domain of net-

work coding is mobile ad hoc networks. By having ran-

dom mixture packets self-orchestrate multiple paths, net-

work coding offers built-in error protection and adaptivity

to topology changes due to joins, leaves, node or link fail-

ures, congestion, etc; by employing a flooding-type deliv-

ery, network coding can be implemented in a distributed

fashion easily, whereas the creation and maintenance of dis-

tribution trees incurs notable signalling overhead, especially

in a dynamic network, such as a mobile ad hoc network. In

fact, these properties render network coding potentially use-

ful for unicasting in mobile ad hoc networks as well.

The benefits of network coding come with a price of ex-

tra processing/implementation complexity. This work aim

at complexity reduction techniques, which are useful for

practical deployment of network coding, especially in low-

end networks such as wireless ad hoc networks.

2. OVERVIEW OF MAIN RESULTS
For a destination t ∈ T , let CG(s, t) denote the minimum

cardinality of an s-t-cut, where an s-t-cut is an edge set

{e ∈ E : tail(e) ∈ X,head(e) ∈ V − X} (1)

with s ∈ X and t ∈ V − X (an edge pointing from v to

w is said to have tail(e) = v and head(e) = w.) Accord-

ing to Menger’s Theorem (Max-Flow = Min-Cut), CG(s, t)
is equal to the maximum number of edge-disjoint s-t-paths

(paths from s to t). Since the capacity (cardinality) of any

s-t-cut is an upper-bound on the achievable rate for informa-

tion transmission from s to t, CG(s, T ) ≡ mint∈T CG(s, t)
is an upper-bound on the multicast capacity.

For the extreme case where T = V − {s} (all nodes

other than s are destinations), Edmonds [3] showed the max-

imum number of edge-disjoint spanning trees rooted at s is

equal to CG(s, T ). In other words, the broadcast capacity

can be achieved by routing information with CG(s, T ) trees.

Some conjectures have been made in the graph theory

literature regarding possible generalizations of Edmonds’

theorem to the case where there exist Steiner nodes (nodes

other than the source s and the destinations T ); however,
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these conjectures have been disproved. For example, Lovász

[4] gave the graph in Fig. 1 to show there are no two edge-

disjoint trees connecting s with T although CG(s, T ) = 2.
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Fig. 1. An example graph G1 [4] with T = {t1, t2, t3}.

In this paper we constructively prove a generalization

of Edmonds’ Theorem. Without loss of generality, assume

s has no incoming edges. Then the edges in G are classi-

fied into two categories: 1) edges entering Steiner nodes,

which we call Steiner edges, and 2) edges entering desti-

nation nodes, which we call non-Steiner edges. We intro-

duce a graph transformation called hardwiring. As illus-

trated in Fig. 3(c), hardwiring an edge e to edge f with

head(f) = tail(e) establishes a single predecessor for e;

after this operation, the information on e has to come from

f . Now we are ready to state the main theorem as follows.

Theorem 1 (Hardwiring Non-Steiner Edges)
Given a directed graph G, a source node s, and destination
nodes T , all the non-Steiner edges of G can be hardwired

while preserving connectivity, i.e., in the resulting graph G̈,
CG̈(s′, T ) = CG(s, T ).

For the example G1 in Fig. 1, Fig. 2(b) gives a possible

final graph G̈1 satisfying the condition in Theorem 1.

Apart from being a generalization of Edmonds’ Theo-

rem, Theorem 1 is useful in reducing the complexity of a

network coding system. Ahlswede et al. [1] showed that

the multicast capacity is CG(s, T ) and it can be achieved by

network coding. Theorem 1 leads to the following general-

ization of Ahlswede et al’s theorem: the multicast capacity

CG(s, T ) can be achieved by performing network coding on

Steiner edges and traditional routing, as a degenerate form

of coding, on non-Steiner edges [5]. Since coding is more

complex than routing, this leads to a complexity saving.

We now use Theorem 1 and Ahlswede et al’s theorem to

prove this generalization of Ahlswede et al’s theorem. First,

according to Ahlswede et al’s Theorem, there exists a net-

work coding solution achieving a multicast rate CG(s, T ) in

G̈. In Fig. 2(b), a capacity-achieving network coding solu-

tion for G̈1 is given by showing next to each edge the in-

formation on it. The source generates two symbols x1 and

x2 in every time unit. x1 is forwarded to t1 and t3; x2 is

forwarded to t2 and t3. Then t3 mixes the received infor-

mation by computing x1 ⊕ x2 (⊕ is XOR), which is further

forwarded to t1 and t2. Thus t1 receives x1 and x1⊕x2 and

can recover x1 and x2; similarly, t2 can also recover x1 and

x2. Hence the multicast capacity of 2.0 is achieved.

Since G̈ fixes all connections of non-Steiner edges in G,

a network coding solution on G̈ maps directly into a net-

work coding solution on G, which satisfies the additional

constraint that the information on each non-Steiner edge is

only produced by routing instead of mixing. This can be

easily verified on the example in Fig. 2(b).

This result (coding on Steiner edges, routing on others)

limits the edges where coding needs to be applied. It also

leads to potential benefits in facilitating the construction of

a capacity-achieving coding solution, since the search space

is now smaller. For example, it may ease the task of decid-

ing the operating field size.

In this paper, we establish Theorem 1 by proving the

correctness of a procedure that repeatedly hardwires a non-

Steiner edge to a Steiner edge or another non-Steiner edge

that has already been hardwired. The proof consists of two

parts: 1) proving that each step is connectivity-preserving,

2) proving that the procedure finishes hardwiring all the

non-Steiner edges. The main challenge lies in the second

part. For this part, we make use of a wire deletion operation

that is more general than the hardwiring operation. Delet-

ing a wire entering an edge e breaks one of its connections

with the predecessor edges, whereas hardwiring e simulta-

neously breaks all but one connections with the predeces-

sor edges. We prove by induction that all wires entering

the non-Steiner edges that have not been hardwired can be

deleted without losing the connectivity. The induction is

performed in a special way: assuming that any subset of k
wires across the cut can be deleted without losing the con-

nectivity, we prove that any subset of k + 1 wires across the

cut can be deleted without losing the connectivity.

3. SOME GRAPH TRANSFORMATIONS
For ease in notation, let h ≡ CG(s, T ). First, we add to G a

new vertex s′ and h source edges, s1, . . . , sh; the resulting

graph is denoted by G[s, h]. These source edges correspond

to the h sub-streams of source information, each with unit

rate. Next we introduce for each edge of G[s, h] a new node,

shown as a dot in Fig. 2(a), which “divides” the edge into

two “halves”. Denote the resulting graph by Ġ. Since there

is a one-to-one mapping between a dot in Ġ and an edge

in G[s, h], we refer to a dot in V (Ġ) (the vertex set of Ġ)

by the name of the corresponding edge in G[s, h]. These

dots play roles as the “connecting points” for the hardwiring

operation.

As illustrated in Fig. 3(a), the operation expand(e1)
introduces a new vertex ve1 that has incoming edges from

f1, f2, f3 and an outgoing edge to e1. Intuitively, this vertex

ve1 can be viewed as a duplicate of v = tail(e1) that pro-

vides information only for e1. We use the name wire to refer

to edges such as (f1, ve1), (f2, ve1), (f3, ve1), since they

correspond to connections between two edges in G[s, h].
Then, we introduce the operation deleteWire: after ex-

panding e1, deleteWire(f2, e1) deletes (f2, ve1), hence
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Fig. 2. (a) The “dotted” version Ġ1 obtained by subdividing

all edges of G1[s, 2]. (b) A possible resulting graph G̈1,

after all non-Steiner edges have been hardwired.
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Fig. 3. The expanding and hardwiring operation.

breaking the connection between f2 and e1.

Next we introduce a hardwiring opeation. As illustrated

in Fig. 3(c), the operation hardwire(f1, e1) deletes edge

(v, e1) and adds edge (f1, e1), where v ≡ tail(e1) ∈ V (G[s, h]).
Note that hardwire(f1, e1) in Fig. 3(c) is equivalent to

deleting all wires except (f1, ve1) in Fig. 3(a). This opera-

tion enforces that the information on e1 will only come from

a single predecessor f1, whereas previously the information

on e1 may be a mixture of the information on f1, f2, f3.

4. A CONSTRUCTIVE PROOF OF THEOREM 1
While Theorem 1 has appeared in [5], here we provide a

new constructive proof with a more direct algorithm.

Algorithm 1 performs a sequence of hardwiring opera-

tions on the graph Ġ (as illustrated in Fig. 2(a)) to eventu-

ally arrive at a final graph G̈ (as illustrated in Fig. 2(b)), in

which all non-Steiner edges E1 have been hardwired. We

use the notation Ġ to refer to the “current” version Ġ, as the

algorithm proceeds. Let ER ⊆ E1 denote the set of non-

Steiner edges that have not been hardwired in the current Ġ.

The procedure always checks if there exists a non-Steiner

edge e ∈ ER that can be hardwired to a predecessor edge

f ∈ E0+E1−ER, i.e., a Steiner edge or a non-Steiner edge

that has been hardwired, while preserving the required con-

nectivity h to head(e). If so, hardwire e to f and remove e
from ER. The algorithm stops when such a qualifying pair

(f, e) cannot be found.

4.1. The Pivoting Lemma
Before proceeding to the main proof, we show a lemma

[5], which is an easy consequence of Menger’s Theorem

(Max-Flow = Min-Cut). Fig. 4 illustrates the conditions in

Lemma 1. We call the node v in Lemma 1 a pivot.

Algorithm 1 A Hardwiring Algorithm

1: ER := E1;

2: while ∃(f, e), f ∈ E0 + E1 −ER, e ∈ ER,head(f) =
tail(e) such that after performing hardwire(f, e),
there are still h edge-disjoint paths to head(e). do

3: hardwire(f, e);
4: ER := ER − {e};

5: end while
s

Fig. 4. The conditions in Lemma 1.

Lemma 1 (Pivoting Lemma [5]) In a directed graph G, con-
sider three vertices s, v, and v′, where s is not adjacent to
either v or v′. Suppose there are h edge-disjoint s-v-paths
P1, . . ., Ph and there are h edge-disjoint paths P ′

1, . . ., P ′
h,

where P ′
1 is from v to v′ and P ′

2, . . . ,P ′
h are from s to v′.

Then there are h edge-disjoint paths from s to v′.

4.2. Proof that Algorithm 1 is connectivity-preserving
First we prove that Algorithm 1 preserves the required edge-

connectivity h to the destinations. Consider a generic itera-

tion of while-loop in Algorithm 1. Let Ġ and Ġ′ denote the

graphs before and after executing hardwire(f, e). As-

suming the existence of h edge-disjoint paths to each des-

tination t ∈ T in Ġ, we need to prove that there exist h
edge-disjoint paths to each destination t ∈ T in Ġ′.

Due to the choice of wire (f, e), there are h edge-disjoint

paths to head(e) in Ġ′. For a destination t �= head(e), de-

note a set of h edge-disjoint paths to t in Ġ by Pt1, . . . ,Pth.

If e is not used in any of these paths, then Pt1, . . . ,Pth are

h edge-disjoint s′-t-paths in Ġ′. If e is used in one of these

paths, say Pt1, then Pt1 has the following form

Pt1 = s → · · · → e → head(e) → · · · → t. (2)

This is because in Algorithm 1 an edge can only be hard-

wired to an edge in E0 + E1 − ER. Thus when e ∈ ER is

hardwired, there is no edge hardwired to e and hence e has

only one outgoing edge to head(e). Then we can apply the

pivoting lemma to show CĠ′(s′, t) ≥ h, using head(e) as

the pivot, the sub-path of Pt1 from head(e) to t as P ′
1, and

Pt2, . . . ,Pth as P ′
2, . . . ,P ′

h.

4.3. Proof that Alg. 1 hardwires all non-Steiner edges
It remains to prove when Algorithm 1 stops, all the non-

Steiner edges have been hardwired. We prove this by con-

tradiction. Let ER refer to the resulting set of non-Steiner

edges that have not been hardwired. Suppose ER �= ∅.
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We then expand all the edges in ER. This allows us

to apply the wire deletion operation, which has finer con-

trol granularity than the hardwiring operation. Denote the

resulting graph by Ġ. Consider the cut

δin(X) ≡ {(u, v) ∈ E(Ġ) : u ∈ V (Ġ) − X, v ∈ X}, (3)

X = ER ∪ {ve : e ∈ ER}. (4)

This is illustrated in Fig. 5, where all the edges that have not

been hardwired reside in the right hand side.

We will prove that after deleting δin(X), there are still h
edge-disjoint s′-t-paths, ∀t ∈ T . This will lead to a contra-

diction since it implies Algorithm 1 should have proceeded

hardwiring these edges.

We establish this result by inductively proving that delet-

ing any subset of δin(X) consisting of k wires preserves the

connectivity h. For k = 0, this is trivially true. Assuming

this assertion is true for k, we now prove that after delet-

ing an arbitrary subset W ⊆ δin(X) with |W | = k + 1,

there exist h edge-disjoint s′-t-paths, ∀t ∈ T . We prove the

existence of h edge-disjoint paths first for destinations in

T1 ≡ {t ∈ T |∃(f, ve) ∈ W,head(e) = t} , (5)

and then for destinations in T − T1, using the destinations

in T1 as pivots.

For any t ∈ T1, choose a wire (f, ve) ∈ W with head(e) =
t. By inductive assumption, there exist h edge-disjoint s′-t-
paths Pt1, . . . ,Pth in Ġ−W + (f, ve). If (f, ve) is used in

none of these paths, then Pt1, . . . ,Pth are h edge-disjoint

s′-t-paths in Ġ−W . If (f, ve) is used in one of these paths,

then it should have been possible to hardwire e to f in Al-

gorithm 1. Thus a contradiction.

For any t ∈ T−T1, pick an arbitrary wire (f, ve0) ∈ W .

By inductive assumption, there exist h edge-disjoint s′-t-
paths Pt1, . . . ,Pth in Ġ − W + (f, ve0). If (f, ve0) is used

in none of these paths, then Pt1, . . . ,Pth are h edge-disjoint

s′-t-paths in Ġ−W . If (f, ve0) is used in one of these paths,

say Pt1, then Pt1 has the following form

Pt1 = s → · · · → f → ve0 → e0 → · · · → ven → en

→ head(en) → · · · → t. (6)

Note that the sub-path shown in boldface enters X via ve0

and leaves X via en.

If head(en) ∈ T1, then there exist h edge-disjoint paths

to head(en) in Ġ−W , according to our earlier discussions.

Then we can apply the pivoting lemma to show CĠ−W (s′, t) ≥
h, using head(en) as the pivot, the sub-path of Pt1 from

head(en) to t as P ′
1, and Pt2, . . . ,Pth as P ′

2, . . . ,P ′
h.

If head(en) /∈ T1, let m be the largest index in {0, . . . , n}
such that head(em) ∈ T1. This is well-defined since (f, ve0) ∈
W and hence head(e0) ∈ T1. Since head(em+1) /∈ T1,

none of the wires entering vem+1 in Ġ has been deleted in

s

…
Fig. 5. A cut separating ER from s.

Ġ−W . Hence vem+1 is essentially a duplicate of head(em)
in Ġ − W (see Fig. 3). Then we can apply the pivoting

lemma to show CĠ−W (s′, t) ≥ h, using vem+1 as the pivot.

4.4. Complexity
First note that we only need to test each pair (f, e) once,

to check whether after hardwire(f, e), there are h edge-

disjoint paths to head(e). If the test result is negative, then

testing hardwire(f, e) later will give the same answer: e
should not be hardwired to f . Further observe that for a

given e ∈ ER, testing the pairs

{(f, e)|head(f) = tail(e), f ∈ E0 + E1 − ER} (7)

can be combined. First, expand e and delete the wires {(f ′, ve)}
for all f ′ ∈ ER. Then, a maximum flow algorithm can be

used to test if there exist h edge-disjoint paths to head(e). If

the answer is no, then the pairs in (7) are all disqualified. If

the answer is yes, then e can be hardwired to its predecessor

edge in the h edge-disjoint paths.

Using a preprocessing technique in [6], a subgraph D
of G can be found satisfying CD(s, T ) = CG(s, T ) and the

in-degree of each destination is h in D. Thus, for a given

e ∈ E1 with tail(e) ∈ T , the number of wires (f, e) to be

tested is bounded by h. For a given e ∈ E1 with tail(e) ∈
V (G)− T , all the wires {(f, e)|head(f) = tail(e)} can be

tested together. Thus the complexity is O(h · |E1| · TMF ),
where TMF is the time to find a maximum flow in Ġ.

5. REFERENCES
[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Net-

work information flow,” IEEE Trans. Information Theory,

vol. IT- 46, no. 4, pp. 1204-1216, July 2000.

[2] P. A. Chou, Y. Wu, and K. Jain, “Practical network coding,”

41st Allerton Conf. Comm., Ctrl. and Computing, Oct. 2003.

[3] J. Edmonds, “Edge-disjoint branchings,” in Combinatorial
Algorithms, ed. R. Rustin, Academic Press, NY, 1973.

[4] L. Lov́asz, “Connectivity in digraphs,” Journal of Combina-
tional Theory B, vol. 15, pp. 174-177, 1973.

[5] Y. Wu, K. Jain, and S.-Y. Kung, “A unification of Menger’s

and Edmonds’ graph theorems and Ahlswede et al’s network

coding theorem,” in 42nd Allerton Conf. Comm., Control
and Computing, Monticello, IL, Oct. 2004, Invited paper.

[6] P. Tong and E. L. Lawler, “A faster algorithm for finding

edge-disjoint branchings,” Information Processing Letters,

17(2):73-76, Aug. 1983.

III - 504

➡ ➠


