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Escola Politécnica, Universidade de São Paulo, 05508-900, São Paulo - SP, Brazil.
E-mail: bordin,baccala@lcs.poli.usp.br

ABSTRACT

This work introduces the use of particle filters for joint blind
equalization/decoding of convolutionally coded signals trans-
mitted over frequency selective channels. As in the equali-
zation-only case, we show how to evaluate the optimal im-
portance function recursively via a bank of Kalman filters.
Numerical simulation investigations using both stochastic
and deterministic particle selection strategies show the out-
standing superiority of the deterministic joint equalization/-
decoding method over approaches that perform blind equal-
ization using particle filters prior to optimal decoding.

1. INTRODUCTION

Either because of slow convergence or excessive complex-
ity, blind equalization still remains a practical challenge de-
spite the many approaches developed in the last two decades
(see [1] for a review). In this context, particle filters [2] - nu-
merical techniques for the solution of Bayesian estimation
problems - can play a major role as a compromise solution,
that balances robustness and convergence speed with com-
plexity of implementation.

Though not exactly new in an equalization-only setting
[3], particle filters failed to attract much attention until re-
cently, possibly due to the scarcity of theoretical results cou-
pled with the need for sufficiently powerful computers that
are only now becoming more widely available. The im-
portance of particle filters is derived from their generality
which allows them to handle elaborate signal models that
are otherwise practically intractable (CDMA signal recep-
tion [4] for example).

As opposed to previous works [3] addressing equaliza-
tion-only scenarios, we here propose the idea of using par-
ticle filters to jointly blind equalize and decode convolu-
tionally coded signals transmitted over frequency selective
channels, in an extension of Punskaya’s work [5]. A fur-
ther innovative aspect is our use of noncoherently noncatas-
trophic codes [6] to successfully deal with the phase ambi-
guities inherent to the blind equalization problem.
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After stating the estimation problem (Sec. 2) and over-
viewing particle filters (Sec. 3), we show how to obtain the
densities applicable to solving the joint blind equalization/de-
coding problem (Sec. 4). This is followed in Section 5 by
numerical illustrations leaving our conclusions to Section 6.

2. SIGNAL MODEL AND PROBLEM STATEMENT

Consider a convolutionally coded digital communication sys-
tem that transmits BPSK symbols over an additive noise
frequency selective channel. Denoting the transmitted bit
sequence by xk and the code rate by 1/R, the transmitted
(binary) symbol sequence ck is obtained as

cRm+n =

(
K∑

l=0

xm−lp
n
l

)
mod 2, 0 ≤ n < R, (1)

where K is the convolutional code constraint length and pn
l

the code generator coefficients. The standard transmitted
BPSK signal is obtained by sk = 2 ck − 1.

We assume a linear and time-invariant FIR transmission
channel and perfect receiver synchronization, so that baud
rate samples yk of the received signal are expressed by the
base-band equivalent model

yk =
L−1∑
l=0

hlsk−l + vk , (2)

where hl is the channel impulse response, L its duration in
symbol intervals and vk the additive noise assumed to be
zero-mean white circular gaussian of variance σ2

v .
In this work, we aim at obtaining MAP estimates x̂k of

the transmitted bits given the observed data, i.e.,

x̂k = arg max
xk

p(xk|y0:k+d
), (3)

where d ≥ 0 and y
0:k

� (y0, . . . , y(k+1)R−1). In next sec-
tions we describe how particle filters can be employed to
obtain estimates of the posterior densities p(xk|y0:k+d

) for
the considered signal model.
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3. PARTICLE FILTERS

Many estimation problems in discrete-time signal process-
ing, including blind equalization, can be stated as that of
tracking the state xk of a dynamic system{

xk+1 = fk(x0, . . . , xk, uk)
yk = gk(x0, . . . , xk, vk) (4)

from the observation of its output y0:k sequence, where fk

and gk, in full generality, may be nonlinear, time-varying
functions and uk and vk stand respectively for system driv-
ing and observation noise.

The Bayesian solution to (4) involves finding the poste-
rior density p(xk|y0:k

), which can be accomplished in closed-
form only in a few restrictive cases. Particle filters pro-
vide iterative approximations to p(x0:n|y0:n

) (from which
p(xn|y0:n

) can be obtained by marginalization) via a weight-
ed sum of Dirac measures which approximates densities of
arbitrary shape [2].

3.1. Principles

Most particle filtering algorithms rest on the importance sam-
pling principle, whereby the probability density p(x0:k|y0:k

)
can be consistently approximated [2] as the weighted sum
of Dirac measures

p̂(x0:k|y0:k
) =

∑M
i=1 w

(i)
k δx0:k(x(i)

0:k)∑M
i=1 w

(i)
k

, (5)

where x
(i)
0:k, 1 ≤ i ≤ M , are independent samples (par-

ticles) from an arbitrary density π(x(i)
0:k|y0:k

) > 0 (impor-

tance function), with δx0:k(x(i)
0:k) denoting Dirac measures

in the variable x0:k centered in x
(i)
0:k, and where w

(i)
k �

π(x(i)
0:k|y0:k

)/p(x(i)
0:k|y0:k

).
The key to the renewed interest in particle filtering comes

from the seminal work of Gordon et al. [7] showing that if
the importance function π(x0:k|y0:k

) can be factored as

π(x0:k|y0:k
) = π(xk|x0:k−1, y0:k

)π(x0:k−1|y0:k−1
), (6)

each element of the sequence x
(i)
0:k can be sampled sequen-

tially from the densities π(xm|x(i)
0:m−1, y0:m

), 0 ≤ m ≤
k. Likewise the weights w

(i)
k can be sequentially updated,

since from Bayes’s law it follows that

p(x0:k|y0:k
) = p(x0:k−1|y0:k−1

)
p(xk, y

k
|x0:k−1, y0:k−1

)

p(y
k
|y

0:k−1
)

,

(7)
which in combination with (6) produces

w(i)
n ∝ w

(i)
k−1

p(x(i)
k , y

k
|x(i)

0:k−1, y0:k−1
)

π(x(i)
k |x(i)

0:k−1, y0:k
)

. (8)

The choice of the importance function, though essen-
tially arbitrary, impacts the algorithm performance: one can
show that π(xk|x0:k−1, y0:k

) = p(xk|x0:k−1, y0:k
) is opti-

mal in minimizing the conditional variance of the (unnor-
malized) weights w

(i)
k hence improving algorithm perfor-

mance. After some iterations, due to a phenomenon known

Table 1. Stochastic Particle Filtering Algorithm
For k = 0, . . . , n,

For i = 1, . . . ,M
-Draw x

(i)
k from π(xk|x(i)

0:k−1, y0:k).
-Update the weights as in (8).

-Normalize the weights.
-Estimate p(x0:k|y0:k) as in (5).

as degeneracy, particle filters can lead to particles x
(i)
0:k that

have negligible weights w
(i)
k what severely compromise (5)’s

estimation. To overcome this, the use of a selection scheme
is mandatory when sample quality falls below a predefined
threshold.

Most particle filter algorithms in the literature employ
stochastic selection (namely, multinomial or residual resam-
pling [2]). Recently, [5] proposed algorithms that employ
deterministic selection, hence the name “deterministic par-
ticle filters”. Despite the lack of rigorous convergence re-
sults, their chief interest is their excellent performance in
certain situations. Motivation for them comes from observ-
ing that the optimal importance function can be expressed
as

p(xk|x0:k−1, y0:k
) =

p(xk, y
k
|x0:k−1, y0:k−1

)∑
xk

p(xk, y
k
|x0:k−1, y0:k−1

)
, (9)

i.e., to determine p(xk|x0:k−1, y0:k
), one must evaluate the

term p(xk, y
k
|x0:k−1, y0:k−1

) for each possible value of xk.
Hence, supposing that uk is a discrete vector variable with
D different possible values, at each iteration, the particle fil-
ter discards M(D − 1) “candidates” x

(i)
k (D − 1 for each

particle). Thus the idea of performing particle selection at
each iteration [8] as described in Table 2 comes to the fore.
As a final remark, it is worth mentioning the particle fil-

tering algorithms described so far can be easily extended to
provide fixed-lag smoothed estimates, since for d > 0 [9]:

p(x0:k|y0:k+d
) ≈

∑M
i=1 w

(i)
k+dδx0:k(x(i)

0:k)∑M
i=1 w

(i)
k+d

. (10)

4. BLIND EQUALIZATION AND DECODING

All densities needed to obtain estimates of p(x0:k|y0:k
) via

both the stochastic particle filter (employing an optimal im-
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Table 2. Deterministic Particle filter Algorithm

For k = 0, . . . , n
For i = 1, . . . ,M

For j = 1, . . . , D
-Calculate w(i,j) = w

(i)
k p(xk = x(j), yk|

x0:k−1, y0:k−1).
-Determine (I, J)t, the sequence of M pairs (i, j)
corresponding to the M largest w(i,j).
For t = 1, . . . ,M

-Make x
(t)
0:k−1 = x

(It)
0:k−1 and x

(t)
k = x(Jt).

-Make w
(t)
k = w(I,J)t .

-Normalize the weights so that
∑M

i=1 w
(i)
k = 1.

-Estimate p(x0:k|y0:k) as in (5).

portance function) and the deterministic particle filter de-
scribed in Sec. 3.1 can be obtained from p(xk, y

k
|x0:k−1,

y
0:k−1

) using (9). Assuming that xk is an IID sequence one
can show that

p(xk, y
k
|x0:k−1, y0:k−1

) = p(y
k
|x0:k, y

0:k−1
) p(xk) . (11)

Moreover, as the bit sequence xk uniquely defines the
transmitted symbol sequence sk, (11) implies (assuming that
xk = 0 for k < 0) that

p(y
k
|x0:k, y

0:k−1
) = p(y

k
|S0:(k+1)R−1, y0:k−1

) , (12)

where Sk � [ sk . . . sk−L+1 ]T , and (s0, . . . , s(k+1)R−1)
is the symbol sequence corresponding to the bit sequence
x0:k. The density on the r.h.s. of (12) further decomposes
as

p(y
k
|S0:(k+1)R−1, y0:k−1

) =
R(k+1)−1∏

j=Rk

p(yj |S0:j , y0:j−1) .

(13)
In (13) we exploited the fact that p(yj |S0:j , y0:j−1) = p(yj |
S0:k, y0:j−1), k > j. In order to determine p(yj |S0:j , y0:j−1)
note that using definitions above, (2) can be rewritten as{

Sj+1 = ASj + e1 sj+1

yj = hHSj + vj
(14)

where A is a (L × L) shift matrix (all entries zero, ex-
cept the first subdiagonal, whose entries are ones), e1 =
[ 1 0 · · · 0 ]T and h = [ h0 · · · hL−1 ]T .

From (14) one can see that yj is conditionally gaussian
given Sj and h. Assuming that the parameter h has gaussian
prior distribution, and exploiting the fact it is conditionally
gaussian given S0:j and y0:j−1, it can be integrated out [4],
resulting in

p(yj |S0:j , y0:j−1) = NC

(
yj | ĥH

j−1Sj ; SH
j Σj−1Sj + σ2

v

)
,

(15)

where ĥj and Σj , respectively the conditional mean and
variance of h are obtained by means of conventional Kalman
filter iterations:

ĥj = ĥj−1 +
y

j
− SH

j ĥj−1

SH
j Σj−1Sj + σ2

v

Σj−1Sj . (16)

Σj = Σj−1 −
Σj−1SjS

H
j Σj−1

SH
j Σj−1Sj + σ2

v

. (17)

From (11)-(17), one can see that evaluating (11) for each
particle requires the evaluation of 2R Kalman filter steps.
Thus, if M particles are employed, the proposed algorithms
require the evaluation of 2MR Kalman filter steps per bit,
twice the complexity of an equalization-only algorithm (op-
erating at the symbol rate).

5. SIMULATIONS

We implemented blind equalization and decoding algorithms
employing particle filters for the signal model in Section 2,
and evaluated their performance using Monte Carlo simula-
tions that measured the bit error rates (BER) over 200 inde-
pendent realizations. In our illustrative simulations, we used
the channel h = [ 0.41 −0.82 0.41 ]T and adopted two
R = 3 noncoherently noncatastrophic convolutional codes
[6] with constraint length K = 3 and K = 4 (with co-
efficients given in octal notation by (7,5,2) and (17,12,4),
respectively) in order to avoid phase ambiguities.

To compute the mean BER the algorithms processed
150 message bits in each realization, and employed a fixed
smoothing lag of 25 samples. The particles’ initial states
S

(i)
−1 were drawn from IID equiprobable ±1 r.v., and we as-

sumed that Σ(i)
−1 = I and h

(i)
−1 ∼ NC(h|0; I). The BER

obtained by the proposed algorithms1 as a function of the
SNR (signal-to-noise ratio) using M = 100 particles and
the (17,12,4) code is shown in Fig. 1. For comparison, we
also show the performance obtained i) by the optimal MLSE
equalizer (Viterbi) followed by a hard-decision decoder and
ii) by a particle filter based blind equalization-only algo-
rithm [4] (employing differential encoding) followed by an
optimal soft decoder (based on the BCJR algorithm [10]).

As one can readily verify, the deterministic joint algo-
rithm outperformed all the others. The stochastic algorithm,
in turn, performed on average equivalently to the concate-
nated scheme, “failing” (i.e., obtaining BER of about 50%)
in some realizations even at high SNR.

Figure 2 depicts the bit error performances of the pro-
posed (deterministic) joint equalization and decoding algo-
rithm employing M = 50 and M = 100 particles and the

1For the stochastic algorithm, we adopted that a multinomial resam-
pling step that is carried out whenever the “effective sample size” [2] falls
below 20%.
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Fig. 1. Performance of the proposed joint equalization and
decoding algorithms and of an alternative separate scheme
using deterministic and stochastic particle filters as a func-
tion of the SNR.

(17,12,4) (square) and (7,5,2) (circle) codes. As one can
verify, the performances obtained with M = 100 particles
are very similar for both codes. With M = 50, however, the
performance of the (17,12,4) code is worse, arguably be-
cause the number of possible states that need to be sampled
is larger in this case.

6. CONCLUSIONS

After introducing the novel use of particle filtering algo-
rithms for joint blind equalization and message decoding
over frequency selective channels that employ convolutional
codes, this work showed that deterministic particle filter-
ing is the best alternative, greatly outperforming both joint
stochastic particle filters and methods that equalize and de-
code messages separately.
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