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ABSTRACT

Theoretically, the achievable side-distortion of a multiple
description (MD) quantizer has a lower bound for a given
level of central distortion, but such rate-distortion bounds
cannot be achieved in practice. This paper presents a new
decoder which exploits the residual redundancy in a sequence
of outputs from a sub-optimal MD encoder to reduce side-
distortion, without compromising central distortion. A hid-
den Markov model-based recursive side-decoder is derived
for the reconstruction of a source from an incomplete set of
descriptions. Simulation results based on encoding a Gauss-
Markov source and a simulated speech process are presented
to demonstrate the effectiveness of the proposed decoder.

1. INTRODUCTION

Multiple description vector quantization (MDVQ) has re-
ceived considerable attention due to its potential applica-
tions in speech and video coding over packet networks and
wireless systems. An M -channel MDVQ encoder consists
of a VQ encoder (a partition of input vector space into a
set of regions) followed by an index assignment (IA) which
assigns M channel indexes to each encoding region (an or-
dinary VQ would assign a single index to each region). The
MDVQ decoding problem can be viewed as an estimation
problem, in which the encoded source vector is estimated
based on any sub-set of m ≤ M indexes. The fundamental
issue in an MDVQ is the trade-off between central distortion
(average error of a decoder which receives all the descrip-
tions) and side distortion (average error of a decoder which
receives only a sub-set of descriptions). Rate-distortion the-
oretic results for 2-channel MDVQ [1] show that, for a given
level of central distortion, achievable side-distortion has a
lower bound. In an optimal MDVQ, the encoded output on
each channel will contain the minimum amount of redun-
dancy required to achieve the lower bound on side-distortion.
However, this ideal condition can only be reached in the
limit of infinite vector dimension. A finite dimensional (prac-
tical) MDVQ will always have some “excess” redundancy
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Fig. 1. A 2-channel multiple description vector quantizer.

on each channel due to the sub-optimality of the encoder.
The objective of the work presented in this paper is to reduce
the side-distortion of an MDVQ, without penalizing the cen-
tral distortion, by exploiting at the decoder the residual re-
dundancy in the output of a suboptimal encoder. Previously,
the use of residual redundancy for joint source-channel cod-
ing has been studied by many authors. In [2], Sayood and
Borkenhagen (who coined the term residual redundancy)
used the correlation in the output of a differential pulse code
modulation (DPCM) encoder for decoding of images in the
presence of channel noise. In [3], the residual redundancy of
a VQ encoder is used for decoding a Gauss-Markov source
over a discrete memoryless channel (DMC). In these work
and in a number of other work, the residual redundancy of
the source encoder is implicitly used as a form of error con-
trol coding.

In this paper, it is shown that the residual redundancy
of an MDVQ encoder, resulting from sub-optimal encoding
of a correlated source, can be used at the decoder to reduce
the source reconstruction error when only partial informa-
tion is received as a result of channel erasures (e.g. packet
losses). Residual redundancy is characterized by modeling
the MDVQ encoder output as a first-order Markov process.
The decoding problem is then shown to be related to an
estimation problem in hidden Markov models (HMM) [4].
Based on this observation, a recursive decoder is presented,
which is well suited for packet-oriented transmission. For
simplicity, only 2 channel MDVQ is considered in this pa-
per. However, the decoding method proposed here readily
generalizes to M-channel MDVQ.
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2. MD QUANTIZATION

We will use upper case letters to denote random variables
and lower case letters to denote realizations. A 2-channel
MDVQ is shown in Fig. 1. Let the source vector, Xn ∈ R

k,
be the output of a discrete-time stationary random process,
where n denotes the discrete-time. For notational conve-
nience, define Ij � {1, . . . , j}. An MDVQ encoder can
be viewed as a cascade of an ordinary k-dimensional, N -
level VQ encoder and an index assignment (IA) [5] which
maps each output Un of the VQ encoder onto an index pair
(I(1)

n , I
(2)
n ), where Un ∈ IN , I

(1)
n ∈ IN1 , and I

(2)
n ∈ IN2 ,

with N ≤ N1N2. The rate of the MDVQ encoder on the
m-th channel is given by Rm = (1/k) log2 Nm bits/sample,
m = 1, 2. Each index is assumed to be transmitted over an
independent erasure channel (we assume that channels are
memoryless). In order to describe the outputs of the chan-
nels, define Ij,∅ � {1, . . . , j, ∅}, where ∅ denotes the null-
output in the event of an erasure. Then the output of the
m-th channel can be described by Î

(m)
n ∈ INm,∅, m = 1, 2.

In this paper we will use square error as the distortion
measure. Let the decoder input be Vn � (Î(1)

n , Î
(2)
n ). Then

the optimal decoder δn(Vn) minimizes the mean square er-
ror (MSE) MSE D0 = E‖Xn − δ(Vn)‖2. If we assume that
the decoders are memoryless and stationary, the optimal de-
coder is given by the centroid condition [5]

δ∗(v) = E{Xn|Vn = v} =
N∑

u=1

guP (Un = u|Vn = v),

(1)
where gu = E{Xn|u}. When channel erasures occur, this
decoder optimally estimates the unknown source vector based
on partial information about the encoder output. That is, it
estimates Xn based on either I

(1)
n or I

(2)
n . When some infor-

mation is lost due to channel erasures, one must fully utilize
all the received information to estimate the unknown source
vector. This means that, if the sequence {Un} is correlated,
then for example, the complete sequences {I(1)

n } and {I(2)
n }

will carry information about Xn. Such correlation exists in
the VQ encoder output if the source is correlated and the
encoder is not optimal for the source. Since all practically
designed VQ encoders are typically sub-optimal, this situ-
ation can be expected to exist in most cases. The residual
correlation in the VQ encoder output can be used by a side-
decoder to better estimate the encoded source vector. In the
following section such a decoder is presented.

3. RECURSIVE SIDE-DECODER

Consider a packet-based communication system, in which
each block of source vectors (x0, . . . ,xL−1), is transmit-
ted in a single packet. For convenience, let the time origin
n = 0 be the start of a packet. Then, a packet-based MDVQ

is assumed to operates as follows. Each block of L consecu-
tive outputs from the VQ encoder, (u0, . . . , uL−1) is assem-

bled into two packets π(1) = (i(1)0 , . . . , i
(1)
L−1) and π(2) =

(i(2)0 , . . . , i
(2)
L−1), which are transmitted over two indepen-

dent channels. Thus, each source packet (x0, . . . ,xL−1) is
encoded into two channel packets π(1) and π(2). Now con-
sider the situation in which, at least one channel packet is
received by the decoder. In this case, the input to the de-
coder is a sequence (v0, . . . , vL−1), where vn = (̂i(1)n , î

(2)
n )

and î
(m)
n ∈ INm,∅, m = 1, 2. Denote (v0, . . . , vL−1) by

vL−1
0 . Now, given that vL−1

0 can be used to decode Xn,
we wish to find the decoder δn(vL−1

0 ) which minimizes the
MSE

E{‖Xn − δn(vL−1
0 )‖2|vL−1

0 }. (2)

It is known from classical estimation theory that the mini-
mum MSE (MMSE) estimate is given by

δ∗n(vL−1
0 ) = E{Xn|vL−1

0 }
=

∑

uL−1
0

E{Xn|uL−1
0 }P (uL−1

0 |vL−1
0 ) (3)

The exact implementation of this decoder is infeasible as the
sum is taken over all possible NL encoder output sequences
of length L (typically, packet length L >> 1). In general,
one can approximate E{Xn|uL−1

0 } � E{Xn|un+n2
n−n1

}, for
some sufficiently large positive integers n1, n2. However,
this would result in an increase of decoder complexity that
is exponential in n1 and n2, for a marginal decrease in MSE.
Hence we assume in this paper that n1 = n2 = 0, that is
E{Xn|uL−1

0 } � E{Xn|un}. Then, we obtain the follow-
ing generalization of the memoryless decoder in (1).

δ̃∗n(vL−1
0 ) =

∑

un

gun
P (un|vL−1

0 ) (4)

It should be clear that the MSE of this decoder cannot be
worse than that of (1). In fact, the simulation results pre-
sented in this paper show that it can be substantially less in
some cases of practical interest.

Let us observe that, if the VQ encoder output {Un} is
uncorrelated, P (un|vL−1

0 ) = P (un|vn) and (4) is identical
to (1). However, since a VQ encoder does not completely
eliminate the correlation in the source, the resulting residual
correlation will be reflected in the posterior probability dis-
tribution P (un|vL−1

0 ). In this paper we will assume that the
encoder residual redundancy can be represented by a first-
order Markov process, i.e. P (un|un−1, . . .) = P (un|un−1).
This assumption is reasonable if the source is approximately
Markov and the encoded output is a good approximation for
the source. Regardless, with {Vn} being an incomplete ob-
servation of {Un}, one can then view the encoder output as
a HMM at the decoder and use the forward-backward algo-
rithm [4] to conveniently compute the posterior probabilities
in (4). This is the basis of the decoder presented below.
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First consider that

P (un|vL−1
0 ) =

P (un,vL−1
0 )

P (vL−1
0 )

=
P (vL−1

n+1 |un)P (un,vn
0 )

P (vL−1
0 )

(5)
where P (vL−1

0 ) =
∑

un
P (vL−1

n+1 |un)P (un,vn
0 ) and we

use the fact that given the current state, the future outputs of
a Markov process are independent of the previous outputs.
Now, using the same notation as in [4], let

αn(un) � P (un,vn
0 )

βn(un) � P (vL−1
n+1 |un). (6)

Then, (5) can be expressed as

P (un|vL−1
0 ) =

αn(un)βn(un)∑
u′

n
αn(u′

n)βn(u′
n)

(7)

The quantities αn(un), un ∈ IN can be computed using the
forward recursions

αn(un) = P (vn|un)
∑

un−1

P (un|un−1)αn−1(un−1) (8)

for n = 0, . . . , L − 1, and the quantities βn(un), un ∈ IN

can be computed using the backward recursions

βn(un) =
∑

un+1

P (vn+1|un+1)P (un+1|un)βn+1(un+1)

(9)
for n = L−2, . . . , 0 (a closer look will reveal that βL−1(u) =
1 for u ∈ IN ). If the received packets are assumed to be free
of bit errors, P (vn|un) values are either 0 or 1 and are solely
determined by the IA mapping in the MDVQ encoder. In the
simulations presented in Sec. 4, we will assume this to be
the case.

An important issue related to forward recursion is the
initialization. At the beginning of a packet period, α−1(u),
u ∈ IN have to be initialized. In decoding a sequence of
packets, the initialization is necessary only at the beginning
of the sequence, provided that at least one channel packet is
received for every packet period. On the other hand when
both channel packets get lost in a packet period, the decoder
has to be arbitrarily initialized for the following packet pe-
riod. The frequency of this happening would increase with
the increasing packet loss probability. In such situations,
one solution would be to include at the beginning of each
channel packet, the value of u0.

4. SIMULATION RESULTS AND DISCUSSION

In this section, the performance of the proposed residual
redundancy-based decoder is evaluated and compared using
simulations. Two different signal sources have been used in
the simulations: (i) the first-order Gauss-Markov (GM) pro-
cess, given by Xn = 0.9Xn−1 + Wn, where Wn is an iid
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Fig. 2. The average side SNR as a function of central SNR for
2-channel MDSQ of the GM source (top) and the simulated speech
process (bottom). The points on the curves correspond to packet-
loss probabilities 0.0001 (right-hand end), 0.0002, 0.0005, 0.001,
0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5 (left-hand end).

Gaussian process and (ii) a simulated speech process based
on the third-order Markov process [6]:

Xn = 1.748Xn−1−1.222Xn−2 +0.301Xn−3 +Zn, (10)

where Zn is an iid Laplace process. The simulated speech
process in (10) has a correlation coefficient of 0.864 [6].
Only 2-channel systems (M = 2) with equal transmission
rates (R1 = R2) and identical packet loss probabilities (PL)
have been considered. In all simulations, a packet length of
L = 128 source vectors has been used.

In the first set of experiments, the performance of the
memoryless decoder in (1) and the residual redundancy based
recursive decoder in (4) (referred to hereafter as the recur-
sive decoder) is compared by considering 2-channel, 2 bits
per sample per channel MD scalar quantization (MDSQ).
In the following, the performance of a decoder is measured
by its output signal to noise ratio (SNR). The average side-
SNR as a function of central SNR at different packet loss
probabilities is plotted in Fig. 2 for both types of decoders
(recall that both decoders yield the same central distortion
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when the same encoder is used). For a given source and a
given value of PL, the MDSQ encoder was designed by it-
erative codebook optimization as described in [5], with an
initial IA obtained by simulated annealing as described in
[7]. The substantial improvement in side SNR due to the
utilization of residual redundancy in decoding is quite clear
in both cases. For example, an improvement of about 3.5
dB is obtained for the GM process at PL = 0.01 (central
SNR about 20 dB). This improvement tends to decrease at
higher loss probabilities, since under such conditions, the
two descriptions produced by the optimal MD encoder are
very similar and little information is lost due to the loss of a
description.

In the next set of experiments, the issue of when resid-
ual redundancy-based decoding can be expected to be use-
ful over memoryless decoding is addressed. In general, one
could expect the residual redundancy-based decoding to be
effective when the degree of sub-optimality of the encoder is
higher. A particular case of interests is when the encoder is a
uniform quantizer. In general, any VQ encoder may be con-
verted into an MDVQ encoder using an optimized IA. This
approach allows us to obtain an MD scalar quantizer using
a uniform quantizer, i.e. an encoder with uniform quantiz-
ing intervals. This may be useful, as uniform quantizers are
widely used in practice due to their simplicity. However, a
uniform quantizer, being optimal only for a uniformly dis-
tributed source, may contain a considerable residual redun-
dancy when used with a non-uniform source. It is therefore
of interest to investigate if the performance loss resulting
from sub-optimality of a uniform quantizer can be compen-
sated for by using the residual redundancy in the decoder. To
this end, a uniform MDSQ encoder was designed for a given
packet loss probability, by optimizing (using simulated an-
nealing [7]) the IA of a uniform quantizer for a Gaussian
source (taken from [8]). However, when the loss probabili-
ties of the channels are identical, the optimal IA is indepen-
dent of this loss probability [7]. In Fig. 3, we compare the
total average SNR of a system which uses this MDSQ en-
coder (we call it MDSQ1) and that of a system which uses
an MDSQ encoder obtained by iterative codebook optimiza-
tion as in [5] and [7] (we call it MDSQ2). It is interesting
to note that, when recursive decoding is used, the average
SNR of MDSQ1 is very similar to that of MDSQ2 at loss
probabilities above 2%. Since MDSQ1 is obtained without
altering the encoder partition, unlike MDSQ2, the central
and side SNRs of MDSQ1 are independent of the packet
loss probability. Consequently, the central SNR of MDSQ1
is substantially higher than that of MDSQ2 at higher loss
probabilities. Furthermore the higher residual redundancy in
the MDSQ1 encoder results in a relatively higher side SNR
with recursive decoding. Thus, as the packet loss probabil-
ity is increased, average SNR of MDSQ1 becomes similar
to that of MDSQ2.
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Fig. 3. The average SNR as a function of packet-loss probability
for uniform MDSQ (MDSQ1) and optimal MDSQ (MDSQ2) for the
GM source.

5. CONCLUDING REMARKS

The decoder presented here may be useful in speech and im-
age coding over packet networks, where the encoder cannot
usually be optimized to exact source or channel statistics.
However, the on-line estimation of encoder Markov model
parameters at the decoder is essential when the source statis-
tics are either unknown or time-varying. This issue will be
addressed in a future work.
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