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ABSTRACT

Recently, we proposed in [8,9] a joint source-channel (JSC) turbo-

(de)coder combining a variable length code (VLC) and a turbo-

code, and applied it to image transfer. The simulation results

showed the better performance and the lower decoding complexity

of this scheme over the previous ones.

The goal of this paper is to assess the performance of such a

scheme at all signal to noise ratios on the channel. Analytical tools

are provided for the understanding and optimization of a wide va-

riety of similar schemes currently explored in the literature. More

precisely, the bit, symbol and frame distance spectra are developed

for VLCs and for VLCs turbo-concatenated with an error correct-

ing code (ECC), in order to get bounds on the corresponding error

rates. Also EXIT charts are extended to three dimensions in order

to analyze the turbo-convergence of the scheme.

1. INTRODUCTION

Joint source-channel (JSC) turbo-(de)coding techniques, based on

variable length codes (VLCs), were recently developed in sev-

eral ways [2, 1, 7, 10], focusing essentially on the VLC or on

the concatenation with an error correcting code (ECC). Because

these schemes were still less powerful than turbo-codes, improve-

ments [6,11] were also proposed for the ECC part by using a turbo-

code, however resulting in a decoder of high complexity if optimal

— the meaning of optimal is given in section 2.

Pushing the use of a turbo-code further, we proposed in [9]

a turbo-decoder, optimal and of low complexity, with three soft-

in/soft-out (SISO) modules for a VLC concatenated with a turbo-

code. Better performances were obtained, compared to previous

schemes and to a classic turbo-code. Some design issues were

discussed, essentially based on simulations results.

This is why in this paper, we provide rigorous tools for the

analysis and the performance prediction of this new scheme. These

tools include the distance spectra and union bounds on the error

rates, as well as EXIT charts [12] extended to three dimensions

for turbo-convergence analysis. Undoubtedly they give for future

works the interesting possibility of analyzing the schemes cited

above and comparing them to each other.
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Fig. 1. Generic coder used throughout the paper.

2. CODER AND DECODER

The coder is depicted in Fig. 1. All previous works cited in the

introduction use such a coder, except the parallel concatenation

of [10] and the absence of the interleaver Π1 in [6, 11]. For all

those schemes, the tools developed in this paper are valid — or

can be extended for [6, 11, 10].

The turbo-decoder can be deduced from the application of

the sum-product algorithm onto the factor graph corresponding to

Fig. 1. The decoder is considered optimal if the factor graph has no

short cycles, since its only suboptimality then resides in the limited

interleaver(s). See [8] and references therein for details.

Note that the primary purpose of the interleaver Π1 is to break

the decoding complexity. The next section will point out that this

interleaver can also offer an additional performance gain.

3. DERIVATION OF THE BOUNDS

It is well known that the bit, symbol and frame error rates

(resp. BER, SER, FER) are minimized with respectively the bit-,

symbol- and frame-MAP (maximum-a-posteriori) detections. To

the frame-MAP detection corresponds the suboptimal frame-ML

(maximum-likelihood) detection. The proposed bounds are based

on the union bound which is valid for the frame-ML detection from

medium to high SNRs (signal to noise ratios on the channel) and

remains valid in practice [3] for turbo-decoders — which are actu-

ally suboptimal symbol-MAP decoders.

3.1. Background on distance spectra

Let us now recall a few principles and notations about distance

spectra, see [4] for details. Given a linear block code C, let

AC
w,h (resp. AC

w,j) denote the number of codewords with weight h
(resp. parity check weight j) generated by information words of

weight w. For convolutional codes, the same notations hold in

terms of “paths” instead of “codewords”. The input-redundancy
(IRWEF) and input-output weight enumerating function (IOWEF)

are defined respectively as AC(W, Z) �
P

w,j
AC

w,j W wZj and

AC(W, H) �
P

w,h
AC

w,h W wHh.
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The union bounds on the FER and BER, for a linear block

code C with Nb information bits, are respectively:

P (e) �
P

w,h
AC

w,h Ph,

Pb(e) �
P

w,h
w
Nb

AC
w,h Ph.

(1)

where Ph = 1
2

erfc(
p

hRcEb/N0) for an AWGN channel with

BPSK modulation; Rc is the code rate; N0 is the one-sided noise

psd and Eb the bit energy. For evaluating the bounds (1), we need

the IOWEF. We refer the reader to the abstract concept of the uni-
form interleaver and to the methods proposed by Benedetto et al.

in [4] for computing the IOWEF of concatenated linear codes.

However these methods can not be applied here because of the

VLC non linearity. One main contribution of this paper is to de-

velop and demonstrate similar methods — to compute the IOWEF

and the bounds — for VLCs concatenated with linear codes.

3.2. Mean spectra of VLCs and bounds

Only a summary of the results and developments is presented due

to the lack of place. Also, for the sake of clarity, the following

assumptions are made: the source symbols are independent; the

source code is a Huffman-like VLC; the number of bits or symbols

is fixed, not both.

For a VLC, we are interested essentially in the union bounds

on the BER and the SER. We start with the SER case which is

simpler. The aim is to get the SER for a symbol Si, i.e.:

SER � E{I(Ši �= Si)} = P (Ši �= Si), (2)

where E{.} denotes an expectation, I(.) is an indicative function

(I(a) = 1 if a is true, 0 otherwise), Si is the emitted source symbol

and Ši the decision at the receiver. In the sequel, a symbol trellis

is considered and the symbol Si is produced during the transition

between the trellis positions i − 1 and i. Then, the expression

Ši �= Si means an error event E
ls
i,i−k, of ls symbols long, begins

at the trellis position i − k, with at least one symbol error in Si:

SER ≤
X
s

∞X
ls=1

lsX
k=1

P (Els
i,i−k|s) P (s), (3)

where
P

s
denotes a summation over all possible emitted se-

quences of symbols (thus including the symbol Si). Note the sim-

plified notation P (S = s) = P (s) is used.

By further developing P (Els
i,i−k|s), the bound on the SER for

VLCs is eventually obtained as:

SER ≤
X
h≥1

Ph

X
s≥1

s AVLC
s,h (4)

AVLC
s,h �

X
s
0

P (s0)
˛̨
˛
n
s
′
0

˛̨
dH (s

0
,s′

0
)=h, dS(s

0
,s′

0
)=s,

first remerge at l(s
0
)=l(s′

0
)

o˛̨
˛ (5)

where AVLC
s,h is called the mean symbol-spectrum; |{.}| is the num-

ber of elements in the ensemble {.}; s0 and s
′
0 are sequences di-

verging from each other at time 0, and merging back for the first at

time l(s0); dH(a, b) (resp. dS(a, b)) is the hamming (resp. sym-

bol) distance between a and b; l(a) is the bit length of a; and Ph

is defined in (1).

The distance dS(a, b) can be also the Levenshtein distance [2]

between a and b. The SER is then denoted SERL. The free dis-
tance dVLC

f of the VLC is defined as the minimum h such thatP
s≥1 AVLC

s,h �= 0.

A relation similar to (4) was firstly proposed in the pioneering

results of [5]. The originality here resides in the more general

and rigorous development used above to get it. Furthermore, this

particular development can be and is extended to provide below

the bit-spectrum of VLCs and in section 3.3 the spectra of block-

VLCs — for the first time in the literature, to our knowledge.

The second error rate of interest is the BER. Even though it is

not fully informative w.r.t. the source distortion, a bound on the

BER gives the interesting possibility of being able to compare the

performance of a VLC against the one of an ECC.

The BER on a bit Ui is defined as BER � E{I(Ǔi �= Ui)}.

A bit trellis is now considered. The only difference w.r.t. the de-

velopment of the SER is that the probability for an error event to

begin at a given trellis position is now function of the probability

to be in the root state (see [8] for an explanation of the root state) at

that position. Consequently, the term P (E
lb
i,i−k|u) similar to (3)

can be expanded as:

P (E
lb
i,i−k|u)P (u) = P (E

lb
i,i−k|u,Ri−k) P (u|Ri−k) P (Ri−k)

It can be demonstrated that the probability P (Rk) to be in the

root state in k is given by P (Rk) = (1/l̄) HCF({li}), where

HCF({li}) is the highest common factor of the VLC lengths li,
and l̄ the average length. Eventually, the BER is bounded by:

BER ≤
X
h≥1

Ph

X
w≥1

w AVLC
w,h. (6)

We call AVLC
w=h,h = (1/l̄) HCF({li})

P
s≥1 AVLC

s,h the mean bit-
spectrum. Note we can simplify (6) because AVLC

w,h = 0 for w �= h.

If the HCF is bigger than 1, the trellis is stationary with a peri-

odicity and the BER in (6) must then be considered as an average

over the period.

Finally, the well known event error rate can also be bounded:

EER ≤
X
h≥1

Ph

X
w≥1

AVLC
w,h. (7)

This result is different from [5].

3.3. Mean spectra of block-VLCs

We call block-VLC a VLC limited to a frame. Obviously, there is a

link between the spectra of a VLC and the one of the correspond-

ing block-VLC. In [3], a method to get the block version spectra

is given for linear CCs. Here, without entering into details, a sim-

ple transformation is given in the polynomial formalism, which is

valid for both linear CCs and non linear VLCs. For VLCs, two

variants of it exist because both a symbol- and a bit-clock can be

used to concatenate the error events in the transformation.

The symbol-clock transformation, for example, of the mean

symbol-spectrum of the VLC into the one of the block-VLC (b-

VLC) can be written with these original polynomial relations:

Ab-VLC
s,h =

P
ls,n≥1

`
Ns−ls+n

n

´
T VLC

s,h,ls,n,

T VLC(S, H, Ls, Ω) =
P

s,h,ls,n
T VLC

s,h,ls,n SsHhLls
s Ωn,

=
P∞

a=1

`
AVLC(S, H, Ls) Ω

´a
,

AVLC(S, H, Ls) =
P

s,h,ls
AVLC

s,h,ls
SsHhLls

s ,

where Ns is the number of symbols in the block-VLC; T VLC
s,h,ls,n is

implicitly defined; and AVLC
s,h,ls

is an obvious extension of (5) with

ls the symbol length of the error events.
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Table 1. Symbols probabilities and VLCs used.
Prob. VLC RVLCdf =1 RVLCdf =2

0.33 11 00 10
0.30 10 01 01
0.18 00 10 000
0.10 011 111 111
0.09 010 11011 1100

Entropy 2.139 - - -
Avg. length l̄ - 2.19 2.37 2.46

Relative code rate - 1.0 0.9241 0.8902
Free dist. d

VLC
f - 1 1 2

Table 2. Global code properties with a parallel symmetric turbo-

code (07, 05)8, for the different VLCs of Tab. 1.
VLC RVLCdf =1 RVLCdf =2

Free distance 7 7 7
Interleaver gain

with long interleavers
1 1 2

Interleaver gain
at high SNR

2 2 4

Int. gain against desynch.,
with long interleavers

1 2 2

The bit-clock (resp. symbol-clock) transformation is more ac-

curate if Nb (resp. Ns) is fixed. Still, for long interleavers, the two

transformations rapidly tend to the same spectra.

3.4. Concatenation with linear codes

Let GC denote the global code of Fig. 1, and ⊗ the operator of

serial concatenation of spectra for linear codes (see eq. (7) in [4]).

This operator still holds in the case of block-VLCs if, again, we

consider the mean spectra. Then the global code spectra are given

by the generic relation: AGC
.,. = Ab-VLC

.,. ⊗ AECC
.,. .

With these spectra and for an ML-decoding of the global code

of Fig. 1, the union bounds on the BER and FER are computed

with (1), and on the SER with:

SER ≤ Ps(e) �
X
s,h

s

Ns

AGC
s,h Ph.

3.5. Simulations and tightness of the bounds

Consider the VLCs of Tab. 1, concatenated with a rate 2/3 punc-

tured recursive systematic CC (RSCC) of generators (07, 05)8,

and a uniform interleaver size is Nb = 384. The bound on the

SERL is compared against the simulation results in Fig. 2. As ex-

pected, the proposed bound is tight at medium to high SNRs.
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Fig. 2. Simulations (continuous) and union bound (dashed) on the

SERL for different VLCs concatenated with a punctured CC.
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Fig. 3. Illustration of the gains given in Tab. 2, uniform interleavers

of length Nb = 384 and Nb = 3840.

4. INTERLEAVER GAINS

It can be shown that the interleaver gains demonstrated in [4] can

be extended to our scheme. Only the final results are reported.

Consider the scheme of Fig. 1 with a parallel symmetric turbo-

code as ECC, with RSCCs as constituent codes. The interleavers

gains for BER and SER are then given asymptotically by:

- for large Eb/N0: 1 − 2wmm + �wmm/dVLC
f �,

- for large Nb if dVLC
f ≥ 2: − 2�(dVLC

f + 1)/2�,

- for large Nb if dVLC
f = 1: − 1,

where wmm is the minimum w such that AGC
w,h=dGC

f

�= 0. Com-

pared to a turbo-code alone, the gains can be doubled if dVLC
f ≥ 2,

as for RVLCdf =2 (reversible VLC) in Tab. 2.

To illustrate this, the bound on the SERL is plotted in Fig. 3

for two interleaver sizes Nb = 384 and Nb = 3840. Note that the

gains computed in Tab. 2 are well confirmed in Fig. 3.

In Tab. 2, we added an unusual extra gain which is the inter-

leaver gain against desynchronization errors (the most disastrous

ones). This one is greater for all RVLCs even if df = 1, hence

their better performance. This generalizes the results of [2]. In

addition, the proposed scheme offers an interleaver gain even for

the FER. This explains why we obtained in [8] great coding gains

for the image error rate with RVLCs and turbo-codes.

5. TURBO-CONVERGENCE OF THE SCHEME

At low SNRs, where the union bound usually underestimates the

performance, an efficient analysis tool for turbo-codes is the 2D

EXIT chart proposed in [12]. This chart can be extended to our

scheme (VLC with a turbo-code) by adding a third dimension,

brought by the VLC SISO module, as illustrated in Fig. 5. The

gray surfaces represent the information produced by the CCs of

the turbo-code. Note that the intersection between these gray sur-

faces and the plane V LCout = 0 give the well known 2D EXIT

chart for the turbo-code alone, which shows in this case that with-

out the VLC SISO module, the decoding trajectory would get stuck

at about CC1out = CC2out = 0.2. But if we add the VLC SISO

module in the iterative decoding (the white surface in the figure)

a 3D tunnel is created through which the decoding trajectory (the

thick white line) can pass in order to reach an extrinsic informa-

tion of 1. The minimum SNR required for the 3D tunnel to exist is

called the convergence threshold. It is the threshold above which

a turbo-decoder with sufficiently long interleavers can converge.
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Fig. 4. Union bounds on the SERL and convergence thresholds

predicted by the 3D EXIT chart for different schemes

A nice property of these 3D EXIT charts is the simplicity of

their construction. Indeed, with a few realistic assumptions, any

of the 3D surfaces can be constructed from its corresponding 2D

curve. Briefly, for three SISO modules a, b, c, the transformation

from 2D to 3D for the module c is given by:

I3D
c,out(Ia, Ib) = I2D

c,out

“
J

`p
[J−1(Ia)]2 + [J−1(Ib)]2

´”

where Ia is the information produced by the module a, Ib by the

module b; I3D
c,out(., .) is the 3D surface, I2D

c,out(.) the 2D curve as it

can be found in [9]; J(.) is defined in [12].

In Fig. 4, the proposed bounds and the convergence thresh-

olds for different VLCs are given. The source is the English al-

phabet, see [11]. The ECC (one or two CCs) is punctured such

that the overall code rate is constant. The figure shows that one

CC is not sufficient to achieve good performance/convergence

whatever VLC is used. It shows also that, depending on the ap-

plication, RVLCsdf =1 with two CCs achieve good performance

(and moreover at a lower convergence threshold as compared to

RVLCsdf =2), while with only one CC, such RVLCsdf =1 behave

very badly. This is a new result which differs from the conclusions

drawn in [2] where only one CC was envisaged.

Besides convergence analysis, the 3D EXIT chart allows also

to optimize the schedule of the iterations between the three SISO

modules. Optimally, the VLC SISO module is only used at the

beginning to pass through the 3D tunnel and to accelerate the con-

vergence, and at the end to correct the residual errors. With such an

optimized schedule, the turbo-decoder we proposed in [9] is sur-

prisingly of lower complexity than the one of a turbo-code alone.

6. SUMMARY AND CONCLUSIONS

We proposed a method to compute the different mean distance

spectra of variable length codes (VLCs) turbo-concatenated with

linear codes, as well as bounds on the error rates at medium to

high SNRs. Also, in the case of VLCs protected by turbo-codes,

EXIT charts are extended to three dimensions in order to predict

the convergence at low SNRs. Moreover, these charts can also be

used to optimize the schedule within the decoding iterations.

As a conclusion, since the developed tools are valid for a wide

variety of schemes, this work will help analyze and design other

joint source-channel turbo-schemes explored in the literature.

Fig. 5. 3D EXIT chart and decoding trajectory. Each dimension

corresponds to the information produced by one SISO module.

7. REFERENCES

[1] R. Bauer and J. Hagenauer, “Iterative Source/Channel-

Decoding Using Reversible Variable Length Codes”, DCC
Conference, pp. 93-102, Snowbird, Mar. 2000.

[2] R. Bauer and J. Hagenauer, “On variable length codes for it-

erative source/channel decoding”, DCC Conference, pp. 273-

282, Snowbird, Mar. 2001.

[3] S. Benedetto, G. Montorsi, “Unveiling turbo codes: some re-

sults on parallel concatenated coding schemes”, IEEE Trans.
Inf. Th., vol. 42, pp. 409-428, Mar. 1996.

[4] S. Benedetto, D. Divsalar, G. Montorsi and F. Pollara “Serial

Concatenation of Interleaved Codes: Performance Analysis,

Design and Iterative Decoding”, IEEE Trans Inf. Th., vol. 44,

pp. 909-926, May 1998.

[5] V. Buttigieg, “Variable-Length Error-Correcting Codes”,

Ph.D. thesis, Dept. of Elect. Engineering, University of

Manchester, England, 1995.

[6] L. Guivarch, J. C. Carlach and P. Siohan, ”Joint source-

channel soft-decoding of Huffman codes with turbo-codes”,

DCC conference, Snowbird, pp. 83-92, Mar. 2000.

[7] A. Guyader, E. Fabre, C. Guillemot, and M. Robert,

“Joint Source-Channel Turbo Decoding of Entropy-Coded

Sources”, IEEE J.S.A. Commun., vol. 19, pp. 1680-1696,

Sept. 2001.

[8] X. Jaspar, L. Vandendorpe, “Three SISO Modules Joint

Source-Channel Turbo-Decoding of Variable Length Coded

Images”, SCC conference, Erlangen, pp. 279-286, Jan. 2004.

[9] X. Jaspar, L. Vandendorpe, “New Iterative Decoding of Vari-

able Length Codes with Turbo Codes,” ICC conference, pp.

2606-2610, Paris, June 2004.

[10] J. Kliewer and R. Thobaben, “Parallel concatenated joint

source-channel coding”, IEE Elect. Letters, Vol. 39, pp.

1664-1666, Nov. 2003.

[11] K. Lakovic and J. Villasenor, “Combining Variable Length

Codes and Turbo Codes”, VTC Conference, vol. 4, pp. 1719-

1723, Birmingham, May 2002.

[12] S. ten Brink, “Convergence Behavior of Iteratively Decoded

Parallel Concatenated Codes”, IEEE Trans. Comm., vol. 49,

pp. 1727-1737, Oct. 2001.

III - 488

➡ ➠


