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ABSTRACT

Many previous attempts at analyzing the convergence behavior of
turbo and iterative decoding, such as EXIT style analysis [1] and
density evolution [2], ultimately appeal to results which become
valid only when the block length grows rather large, while still
other attempts, such as connections to factor graphs [3] and belief
propagation [4], have been largely unsuccessful at showing con-
vergence due to loops in the turbo coding graph. The information
geometric interpretation presented in this paper, which builds upon
the results of [5], [6], and [7], allows us to relate the quantities of
interest in the turbo decoder. Using it, we point out a measure
which will be key in studying convergence.

1. INTRODUCTION

Along with being one of the most prominent communications in-
ventions of the past decade, the introduction of turbo codes in [8]
began a new era in communications systems which brought them
closer than ever to theoretical performance limits. The creation
of turbo codes introduced a new method of decoding these codes
which brought the decoding of complex codes within the reach of
computationally practical algorithms. The iterative decoding al-
gorithm, while being suboptimal, performs well enough to bring
turbo codes very close to theoretically attainable limits. Yet, an
accurate justification for why the decoding strategy performs as
well as it does is still lacking. Significant progress has been made
with EXIT style analysis [1] and density evolution [2], but these
techniques appeal to approximations which are only valid in the
case of very large block sizes. Connections were shown to the
sum product and belief propagation algorithms in [3] and [4], but
these algorithms are only known to converge when the code graph
has no loops, which is rarely true for turbo codes. Indeed, many
questions remain concerning where the fixed points of the iterative
decoding algorithm lie and under which conditions the algorithm
converges.

In order to gain some insight into the iterative decoding al-
gorithm, we will follow in the footsteps of [5], [6], and [7] and
develop a information geometric interpretation of turbo decoding.
Our approach differs in several ways from [6] and [7], because we
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will consider the algorithm as four projections rather than two, and
we will avoid working in the log domain. We will also be able to
provide a couple of new results complementing [9] as to the form
of the solutions to the projections and the properties which they
satisfy in our context.

In order to make the exposition as clear as possible, we will
review the relevant information geometric concepts in Section 2,
giving examples along the way, before studying information pro-
jections in Section 3, and finally stating the information projection
form of the turbo decoding algorithm in Section 4. At that point
we state the equations we know relating the quantities of interest
to the turbo decoding algorithm, and mention a quantity that is key
to convergence in this formulation.

2. INFORMATION GEOMETRY OF PMFS

In our investigation we will be interested in the set F of all proba-
bility mass functions (PMFs) on a binary word, x ∈ BN , of length
N , where x is a length N vector whose entries are 0 or 1 (bits)
and BN is the set of all such xs. We will consider coordinate sys-
tems for F , which will be a bijective mapping between a subset,
D, of the extended Euclidean space R

N �{±∞} and the set of all
possible PMFs F . It turns out (because discrete probability densi-
ties can be viewed as exponential densities [6]) that there are two
natural coordinate systems for the set of all PMFs on BN [10].

The first possible coordinate system for F can be formed
by first enumerating all of the points in BN , so we have A =
{x0, x1, . . . , x2N−1}. Then, to represent a PMF P ∈ F , just use

ηi = P(xi)

for i ∈ {1, . . . , 2N −1}. We will call this coordinate system the η
coordinate system, and affine manifolds in these coordinates will
be called m-flat manifolds or m-flat submanifolds.

Ex. 1 (Posterior PMFs for a Code [5]): The set of all posterior
PMFs for a given code forms an m-flat submanifold of the manifold
of all PMFs for a binary observation.

A second way to represent a PMF P ∈ F , is to calculate for
each i ∈ {1, . . . , 2N − 1}

θi = log

�
P(xi)

P(x0)

�

We shall refer to this coordinate system as the θ coordinates, and
affine manifolds in these coordinates will be referred to as e-flat
manifolds (or submanifolds).
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Ex. 2 (P: The Space of Product PMFs [6]): The space of PMFs
which can be written as a product of their marginals is an e-flat
manifold. In other words, the set of factorizable PMFs is an affine
manifold in the θ coordinates.

Proof: Define the matrix B =
�
b0,b1, · · · ,bi, · · · ,b2N−1

�T
where bi is the vector binary representation of i. For any PMF z
on BN define θz to be the vector of θ coordinates of z. Then,

P =

�
z|F

�
0
θz

�
= 0

�
(1)

where F’s columns are a basis for null(BT ). �

3. INFORMATION PROJECTIONS

In this section we will consider two types of information projec-
tions onto sets of PMFs. Here, because we are dealing with dis-
crete densities, the relations are less complex that those encoun-
tered in [9]. Also, we will not concern ourselves about questions
of existence and uniqueness of solutions here, since these are ad-
dressed in [9], which proved them for the context we are working
with. In general, a projection will be finding a point in some set of
PMFs which minimizes the Kullback Leibler distance between it-
self and another given PMF. Because the Kullback Leibler distance
is not symmetric, there are two types of projections, m-projections
and e-projections. We discuss these below.

3.1. m-Projections

Consider the following optimization problem. Given a PMF r(x),
find the PMF, p(x), which minimizes the relative entropy among
the set of PMFs satisfying the constraints1

p ∈ H =

�
q|
�
x

q(x) = 1,
�
x

hi(x) log(q(x)) = βi

�
(2)

that is
p = arg min

q∈H
D(r||q) (3)

The existence and uniqueness of a solution to such an optimization
problem is discussed in [9]. We have independently developed the
following result

Prop. 1: The solution p to the optimization problem above takes
the form

p(x) = r(x) +
�

i

eihi(x) (4)

where the constants ei are chosen to satisfy the constraints in (2).
Also

D(r||p) = H(p) − H(r) +
�

i

eiβi (5)

where H(p) =
	

x p(x) log(p(x)) is the entropy of p. Further-
more, for any other PMF q in the constraint set H we have

D(r||q) = D(r||p) + D(p||q) (6)

1Note that, in the language of [6], [10], these constraints form an e-flat
submanifold of the manifold of all PMFs.

Proof: To see this, consider

D(r||p) =
�
x

r(x) log(r(x)) −
�
x

r(x) log(p(x)) (7)

and

D(r||q) =
�
x

r(x) log



r(x)p(x)

q(x)p(x)

�

=
�
x

r(x) log



r(x)

p(x)

�
+
�
x

r(x) log



p(x)

q(x)

�

= D(r||p) +
�
x

r(x) log



p(x)

q(x)

�
(8)

Substituting in r(x) = p(x)−	i eihi(x) in (7) and (8), we have

D(r||p) = H(p) − H(r) +
�

i

ei

�
x

hi(x) log(p(x))

which gives (5), and

D(r||q) = D(r||p) +
�
x

p(x) log



p(x)

q(x)

�

+
�

i

�
x

eihi(x) log(
p(x)

q(x)
)

= D(r||p) + D(p||q) +
�

i

(eiβi − eiβi)

= D(r||p) + D(p||q)

This shows that if there is a density of the form (4) which satisfies
the constraints in (2) then it solves the minimization problem (3)
and satisfies (6). �

Ex. 3 (Maginalization): Finding the nearest factorizable PMF in
terms of relative entropy to a given PMF is an m-projection. Fur-
thermore the density that results has the same bitwise marginal
probabilities as the original density. [6]

Proof: Defining, as before, B and a basis for the null space of
B, to be F = null(BT ) let fi(xj) = F[i, j]∀i, j. If we define
hi(x0) = fi(x0) −	x fi(x) and hi(x) = fi(x)∀x �= x0, then,
using (1) our constraints are

P = {z|
�
x

hi(x) log(z(x)) = 0 ∀i ∈ {1, . . . , N − 1}}

which is the form desired. To see second half of the statement,
recall that the relative entropy between a point with θ coordinates
θr and a point in P which will have θ coordinates Bλ [7]

Dθ(θr||Bλ) = <
exp(θr)

‖ exp(θr)‖1
, θr − 1 log(‖ exp(θr)‖1)

−Bλ + 1 log(‖ exp(Bλ)‖1) >

where we added a zero on top of θr so that it would have the ap-
propriate dimension. Taking the derivative with respect to λ and
setting equal to zero yields

BT exp(Bλ)

‖ exp(Bλ)‖1
− BT exp(θr)

‖ exp(θr)‖1
= 0

and since multiplying the η coordinates by BT yields the mar-
ginals [7], we see that at the minimum relative entropy, the mar-
ginals of the densities θr and Bλ must be equal.�
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3.2. e-Projections

Consider the following optimization problem, whose relevance,
formulation, and solution were noted in [5]. Given a PMF r(x),
find the PMF, p(x), which minimizes the relative entropy among
the set of PMFs satisfying the following constraints

p ∈ H =

�
q|
�
x

fi(x)q(x) = µi i ∈ {0, 1, . . . , N − 1}
�

(9)
That is, find

p = arg min
q∈H

D(q||r) (10)

The existence and uniqueness of a solution to such an optimization
problem is discussed in [9]. We have the following result

Prop. 2: The solution p to the optimization problem above takes
the form

p(x) = r(x) exp

�
c0 +

�
i

cifi(x)

�
(11)

where the constants ci are chosen to satisfy the constraints. Fur-
thermore, any other PMF q in the constraint set satisfies

D(q||r) = D(p||r) + D(q||p) (12)

Proof: First of all, note that

D(p||r) =
�
x

p(x) log

�
r(x) exp

�
c0 +

�
i cifi(x)

�
r(x)

�

=
�
x

p(x)

�
c0 +

�
i

cifi(x)

�
= c0 +

�
i

ciµi

D(q||r) =
�
x

q(x) log

�
q(x)p(x)

r(x)p(x)

	

= D(q||p) +
�
x

q(x) log(exp(c0 +
�

i

cifi(x)))

= D(q||p) + c0 +
�

i

ciµi = D(q||p) + D(p||r)

This shows that if there exists a density of the form in (11) which
satisfies the constraints in (9) then it solves the optimization prob-
lem in (10) and satisfies (12). �

4. INFORMATION PROJECTION INTERPRETATION OF
TURBO DECODING

We describe the turbo decoding algorithm in terms of its projec-
tions and its intrinsic information extractions. Here, we will be
considering turbo codes created via parallel concatenation, as in
Fig. 1. A typical turbo decoding implementation is shown in Fig.
2. Inside the box labelled BCJR, the bitwise MAP soft decoding
is done for one of the component decoders using the probabilities
associated with the systematic bits and the parity check bits for
that decoder. The box labelled Extract extracts the intrinsic infor-
mation for the systematic bits, and the Interleave block interleaves
the likelihood information for the bits.

In what follows, C0 are the constraints for the first component
code, C1 are the constraints for the second component code, and P

Encoder
(5,7)

Encoder
(5,7)

Interleaver
M

U
X

Fig. 1. A parallel concatenated turbo code. The MUX selects both
the systematic and parity check bits from one of the component
codes and just the parity check bits of the other. If puncturing is
used, some of the parity check bits are never transmitted.

BCJR

BCJRInterleave

De−Interleave Extract

Extract

q t

uv

r

r

Fig. 2. The turbo decoder.

is the space of all product densities. We have already shown that
P can be written as an affine manifold in the θ coordinates (i.e.
an e-flat submanifold). C0 and C1 are developed from the parity
check equations for the two component codes, [5], and can both
be written as affine manifolds in the η coordinates (i.e. as m-flat
submanifolds) by way of example 1.

To be specific, for any possible input message m, denote the
parity bits created by the first code by c0(m) of length N0, and
denote the parity generated by the second code by c1(m) of length
N1. This way, with attention to the output of both encoders, we can
denote the codebook for the first code by B0 = {(m, c0(m),b0)}
and the codebook for the second code by B1 = {(m,b1, c1(m))}
where we were considering all m ∈ {0, 1}N , bi ∈ {0, 1}Ni so
that the overall code book for the parallel concatenated code can
be written as B0


B1. Furthermore, if we define f(x) to be 0
if x ∈ B0 and 1 otherwise, and g(x) to be 0 if x ∈ B1 and 1
otherwise, this allows us to write the constraint sets C0 and C1 as

C0 = {z|
�
x

f(x)z(x) = 0}

C1 = {z|
�
x

g(x)z(x) = 0}

Let r be the bitwise conditional probabilities (irrespective of the
codes) that we observe at the AWGN channel output given the
input was±1, and let rs be just the bitwise conditional probabilites
of the systematic bits. Finally, we let P and hi be defined as in
examples 2 and 3 with the additional restriction that they the pmfs
they contain are functions of the systematic bits only.

Given these definitions, the turbo decoding algorithm admits
an exact interpretation as the iteration of the following six steps,
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where ei, bi, ci and di are the constants which satisfy the con-
straints for the minimization. There is an implicit understanding
that whenever two PMFs are multiplied or divided, there will be a
constant multiplicative scale factor included (which is not shown)
which ensures that the new PMF sums to 1. We also have written
the equations we know for the form of the solution to each projec-
tion and the minimum distance attained at each step.

1. e-Projection to C0

pk = arg min
z∈C0

D(z||ruk) = ruk exp {c0 + c1f(x)}

D(z||ruk) = D(pk||ruk) + D(z||pk) ∀z ∈ C0

D(pk||ruk) = c0

2. m-Projection to P
qk = arg min

z∈P
D(pk||z) = pk(x) +

�

i

eihi(x)

D(pk||z) = D(pk||qk) + D(qk||z) ∀z ∈ P
D(pk||qk) = H(qk) − H(pk)

3. Extract Extrinsic Information

tk = qk/rsuk ∈ P

tk(x) =
r

rs
exp {c0 + c1f(x)} +

�
i eihi(x)

rsuk(x)

4. e-Projection to C1

vk = arg min
z∈C1

D(z||rtk) = rtk(x) exp (d0 + d1g(x))

D(z||rtk) = D(vk||rtk) + D(z||vk) ∀z ∈ C1

D(vk||rtk) = d0

5. m-Projection to P
sk = arg min

z∈P
D(vk||z) = vk +

�

i

bihi(x)

D(vk||z) = D(vk||sk) + D(sk||z) ∀z ∈ P
D(vk||sk) = H(sk) − H(vk)

6. Extract Extrinsic Information

uk+1 = sk/rstk ∈ P

uk+1 =
r

rs
exp (d0 + d1g(x)) +

�
i bihi(x)

rstk(x)

Here, steps 1 and 2 combined describe the behavior of the
first component decoder, which takes the probabilistic channel ob-
servations r along with the pseudo-priors uk, and determines the
pseudo-posteriors qk, from which the extrinsic information tk is
extracted in step 3. Similarly, steps 4 and 5 combined describe the
behavior of the second component decoder, which takes the ex-
trinsic information from the output of the first component decoder
as pseudo priors and determines the bitwise pseudo posteriors sk,
from which the extrinsic information uk+1 is extracted, and the
structure iterates. The pseudo-posteriors which the turbo decoder
makes its final hard decisions based on are qk and sk.

Keeping in mind that the turbo decoder is said to converge
when the two decoder’s pseudo posteriors, qk and sk, agree, one
possible quantity to track over time to determine the convergence
of iterative decoding would be D(qk||sk). This information geo-
metric interpretation ought to aid in tracking such a quantity. In
fact, as shown in Fig. 3, simulations using two (5,7) encoders, a
random interleaver, and Eb/N0 = 3.5dB suggested that this quan-
tity decreases montonically with time.

Iteration
0 2 4 6 8 10 12 14

0

–50

–100

–150

–200

–250

–300

–350

(d
B
)

D
(q

k‖s
k)

Fig. 3. Apparent monotone convergence of D(qk||sk) for two
(5, 7) encoders, a random interleaver, and Eb/No = 3.5dB.
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