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ABSTRACT

Sequential Monte Carlo (SMC) schemes have been recently
proposed in order to perform optimal equalization of Multiple
Input Multiple Output (MIMO) wireless channels. Unfortunately,
for each simulated data sample, the complexity of existing
algorithms grows exponentially with the number of input data
streams. In this paper, we propose a novel SMC MIMO channel
equalizer that avoids this limitation. An adequate design of the
data sampling scheme leads to a reduction of the computational
load per sample, which becomes linear in the number of channel
inputs. Computer simulations that illustrate the nearly optimal bit
error rate of the proposed SMC equalizer are presented.

1. INTRODUCTION

Very recently, the application of Sequential Monte Carlo (SMC)
methods, also known as particle filtering (PF) [1], to Multiple
Input Multiple Output (MIMO) channel equalization has been
proposed in some papers, including [2, 3, 4]. In [2] it is shown
that nearly optimal bit error rate (BER) can be achieved using
particle filtering, but the complexity of the sampling scheme in [2]
grows exponentially with the number of input data streams. In [3],
complexity of the SMC algorithm is reduced by handling together
identical data samples, or particles, which are represented as paths
in a tree. In the same spirit, an stochastic M tree-search algorithm
is proposed in [4].

Although the techniques in [3, 4] are successful in reducing the
number of Monte Carlo samples to be processed, the complexity of
generating and propagating each particle still grows exponentially
with the number of data streams. In this paper, we propose
a novel SMC MIMO equalizer that avoids this limitation. We
adequately design the data sampling scheme in order to constrain
the computational load per particle to be linear in the number of
input data streams. Computer simulations that illustrate how the
proposed SMC receiver attains nearly optimal bit error rate with a
small number of particles are presented.

The remaining of the paper is organized as follows. In next
section, the signal model for transmission over a MIMO dispersive
channel is described. In section 3, The standard application of
PF to MIMO equalization is discussed and the proposed SMC
receiver is introduced. Illustrative computer simulations are shown
in section 4 and, finally, concluding remarks are made in section
5.

This work was supported by Ministerio de Educación y Ciencia of
Spain (project TEC2004-06451-C05-01).

2. SIGNAL MODEL

Transmission over a frequency-selective wireless channel with
N input data streams and L output observation streams can be
described by the discrete-time baseband-equivalent model (see,
e.g., [2])

xt =

m−1X
i=0

Ht(i)st−i + gt, t = 0, 1, . . . (1)

where xt is the L × 1 vector of observations collected at the
receiving antennas, {Ht(i)}m−1

i=0 is the (time-varying) L × N
matrix impulse response of the channel, st = [st(1), . . . , st(N)]�

is the N × 1 vector of symbols transmitted at time t and gt is
an L × 1 vector of independent Additive White Gaussian Noise
(AWGN) components with variance σ2

g,t.
It is common [1] to model the channel variation by means of a

an AR (AutoRegressive) proccess driven by white Gaussian noise.
Hence, we consider the first order AR model (see, e.g., [5])

Ht(i) = αHt−1(i) + Vt(i) ∀i (2)

where Vt(i) are L × N matrices of i.i.d. Gaussian elements
with zero mean and variance σ2

v . Model parameters α and σ2
v are

selected to fit the field-measured autocorrelation function of the
channel [1].

Using the above equations, MIMO transmission can be
modeled as a dynamic system in state-space form. Specifically,
the system state at time t consists of the channel impulse
response, {Ht(i)}m−1

i=0 , and the symbol vectors st−m+1:t =
{st−m+1, . . . , st}. The channel state equation is (2), while the
symbols are modeled as discrete uniform random variables in the
alphabet S , hence st ∼ U(SN). The observation equation is (1).

The dynamic system representation allows to use particle
filtering in order to compute optimal joint estimates of the channel
response and the transmitted data from the collected observations,
as described below.

3. MIMO CHANNEL EQUALIZATION

3.1. Sequential Importance Sampling

Most particle filtering methods rely upon the principle of
Importance Sampling (IS) [6] for building an empirical
approximation of a desired PDF (say p(x)) by drawing samples
from a different distribution, known as importance function or
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proposal PDF (denoted q(x)). These samples are then assigned
appropriate normalized importance weights, i.e.,

x(n) ∼ q(x) and w(n) ∝ p(x(n))

q(x(n))
,

where
PN

n=1 w(n) = 1. Since we are interested in detecting
the transmitted symbols, we need to approximate the a posteriori
PDF p(s0:t|x0:t) which contains all relevant statistical information
for the optimal (Bayesian) estimation of s0:t, and the importance
function has the form q(s0:t|x0:t).

One of the most appealing features of the particle filtering
approach is its potential for online processing. Indeed, the IS
principle can be sequentially applied by exploiting the recursive
decomposition of the posterior distribution

p(s0:t|x0:t) ∝ p(xt|s0:t, x0:t−1)p(s0:t−1|x0:t−1), (3)

which is easily derived by taking into account the a priori uniform
PDF of the symbols, and an adequate importance function that can
be factored as

q(s0:t|x0:t) = q(st|s0:t−1,x0:t)q(s0:t−1|x0:t−1). (4)

The recursive algorithm that combines the IS principle and
decompositions (3) and (4) to build a discrete random measure that
approximates the posterior PDF is called Sequential Importance

Sampling (SIS) [6]. Let Ωt =
n
s
(i)
0:t, w

(i)
t

oM

i=1
denote the discrete

measure at time t. The desired PDF is approximated as

p̂(s0:t|x0:t) =
MX

i=1

δ(s0:t − s
(i)
0:t)w

(i)
t ,

where δ(·) is Dirac’s delta function. When a new observation is
collected at time t + 1, the SIS algorithm proceeds as follows to
recursively compute Ωt+1:

1. Importance sampling: s
(i)
t ∼ q(st|s(i)

0:t−1,x0:t).

2. Weight update: w̃
(i)
t = w

(i)
t−1

p(xt|s(i)0:t,x0:t−1)

q(s
(i)
t |s(i)0:t−1,x0:t)

3. Weight normalization: w
(i)
t =

w̃
(i)
t

PN
k=1 w̃

(k)
t

It can be shown that the particle filter computed with the SIS
algorithm converges to the desired posterior pdf for a sufficiently

large number of particles [6], i.e., p̂(s0:t|x0:t)
N→∞−→ p(s0:t|x0:t).

Besides, it is straightforward to obtain data estimates from the
approximate PDF p̂(s0:t|x0:t). E.g., a marginal MAP detector can
be implemented as

ŝmap
t = arg max

st

(
MX

i=1

δ(st − s
(i)
t )w

(i)
t

)
, (5)

which amounts to selecting the particle with the highest
accumulated weight (note that some particles can be replicated).

One major problem in the practical implementation of the
SIS algorithm is that after few time steps most of the particles
have importance weights with negligible values (very close to
zero). The common solution to this problem is to resample the
particles. Resampling is an algorithmic step that stochastically
discards particles with small weights while replicating those with
significant weight. In its simplest form, resampling generates
N new particles {s(i)

0:t, 1/M}M
i=1 by drawing samples from the

discrete PDF presampling(s
(i)
0:t) = w

(i)
t .

3.2. Optimal importance function

The performance of the SIS algorithm considerably depends on the
choice of importance function. The optimal proposal PDF for the
MIMO equalization problem is

q(st|x0:t, s0:t−1) = p(st|x0:t, s0:t−1) ∝ p(xt|s0:t,x0:t−1),
(6)

which contains all the information available at time t for the
sampling of st. The likelihood on the right-hand side of (6)
can be obtained in closed-form. Indeed, if we let Ht =
[Ht(m − 1) · · ·Ht(0)] be the L×Nm overall channel matrix and
use ht to denote the LNm × 1 vector built by taking all elements
in Ht row-wise, then we can write

p(xt|s0:t,x0:t−1) =R
ht

p(xt|st−m+1:t,ht)p(ht|s0:t−1,x0:t−1)dht. (7)

Both densities in the integrand are Gaussian and, therefore,
the integral can be solved (see, e.g., [5]). Specifically,
p(xt|st−m+1:t,ht) = N (

Pm−1
i=0 Ht(i)st−i, σ

2
g,tI) while

p(ht|s0:t−1,x0:t−1) can be computed using the Kalman Filter
(KF). The latter observation becomes apparent if we note that,
given the symbols s0:t, the dynamic system (2)-(1) is linear in
ht and Gaussian. It is actually well-known that the KF can be
integrated into the SIS algorithm for conditionally-linear Gaussian
systems and the resulting method is termed Mixture Kalman Filter
(MKF) [6, 7, 5].

The weight update equation for the importance function (6)
can be easily derived, and the complete algorithm becomes

s
(i)
t ∼ qt(st) =

p(xt|st, s
(i)
0:t−1, x0:t−1)P

s̃t∈SN p(xt|s̃t, s
(i)
0:t−1,x0:t−1)

(8)

w
(i)
t ∝ w

(i)
t−1

X
s̃t∈SN

p(xt|s̃t, s
(i)
0:t−1,x0:t−1), (9)

with resampling when needed.
From (8), (9), it is seen that the MKF algorithm requires the

computation of |S|N different likelihoods (one for each possible
value of st) and each likelihood involves one Kalman filter
step. As a consequence, the complexity of the method grows
exponentially with the number of transmit antennas, which renders
the algorithm impractical.

Moreover, algorithm (8), (9) yields a poor average
performance when the MIMO channel is highly dispersive.
Indeed, due to the channel convolutional effect, the energy of st is
distributed over two or more symbol periods and decisions made
at time t are necessarily unreliable.

3.3. Delayed Sampling

Whatever the approach, detection in dispersive channels usually
requires smoothing, i.e., st is detected based on posterior
observations x0:t+d, where d ≥ m − 1 is a smoothing lag. In
the context of particle filtering, smoothing is also referred to as
delayed sampling [6, 5] because particle s

(i)
t cannot be drawn until

xt+d is observed.
The optimal smoothing importance PDF is

q(st|s0:t−1,x0:t+d) = p(st|s0:t−1, x0:t+d)

∝ P
s̃t+1:t+d∈SNd

Qd
k=0 p (xt+k|s0:t, s̃t+1:t+k,x0:t+k−1) ,(10)
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where factors p (xt+k|s0:t, s̃t+1:t+k,x0:t+k−1) can be computed
in the same way as (7), and the weight update equation becomes

w
(i)
t+d = w

(i)
t+d−1

X
s̃t:t+d

dY
k=0

p
“
xt+k|s(i)

0:t−1, s̃t:t+k,x0:t+k−1

”
.

(11)
where s̃t:t+d ∈ SN(d+1). Therefore, sampling and updating
a single particle with this method involves the computation of
|S|N(d+1) likelihoods, one for each possible different sequence
s̃t:t+d, and each likelihood requires d+1 Kalman filter steps. This
means that the complexity of the algoritm grows exponentially
with the number of antennas and the smoothing parameter, i.e.,
it is O(|S|N(d+1)). Although the smoothed MKF procedure
guarantees a practically optimal performance, its computational
burden makes it intractable.

3.4. Constrained-complexity smoothing

In order to perform smoothing with a tractable complexity, we
propose a novel SMC scheme based on the ideas of sampling
in a higher dimension [8] and sequentially on the user (data)
space [9]. Specifically, we address the approximation of the
joint PDF p(s0:t+d,ht:t+d|x0:t+d) using an importance function
qt+d(st:t+d,ht:t+d), to be defined below. In this case, the SIS
algorithm is “

s
(i)
t:t+d,h

(i)
t:t+d

”
∼ qt+d(st:t+d,ht:t+d)

w
(i)
t+d = w

(i)
t+d−1

Qd
k=0 p(xt+k|h(i)

t+k
,s

(i)
t+k

)p(ht+k|s(i)0:t+k
,x0:t+k−1)

qt+d(s
(i)
t:t+d

,h
(i)
t:t+d

)

(12)

for i = 1, . . . , M , and resampling when needed. Note that
the factors on the numerator of the weight update equation are
all Gaussian and can be computed (using the KF for the right-
most likelihood). The symbols s

(i)
t+1:t+d and the channel sequence

ht:t+d are just auxiliary variables [8] which are sampled for
convenience and can be discarded in order to obtain a discrete
random measure Υt+d = {s(i)

0:t, w
(i)
t+d}M

i=1 that approximates
p(s0:t|x0:t+d).

In order to define the proposal PDF, qt+d(·), we need to build
a transformed observation model. We begin with the L × (d + 1)
stacked vector

xt,d = Ht,dst,d + gt,d (13)

where xt,d = [x�
t , . . . ,x�

t+d]
�, st,d =

ˆ
s�t−m+1, . . . , s

�
t+d

˜�
is the N(m + d) × 1 vector containing all contributing symbols,

gt,d =
ˆ
g�

t , . . . , g�
t+d

˜T
is the L(d + 1) × 1 AWGN vector, and

Ht,d =

2
6666666666666664

Ht(m − 1) 0 · · · 0
Ht(m − 2) Ht+1(m − 1) · · · 0

... Ht+1(m − 2)
. . .

...

Ht(0)
...

. . . Ht+d(m − 1)
... Ht+1(0)

. . . Ht+d(m − 2)
...

...
. . .

...
0 0 · · · Ht+d(0)

3
7777777777777775

�

is the L(d + 1) × N(m + d) stacked channel matrix.

Let us initially factor the importance PDF as

qt+d(h
(i)
t:t+d, s

(i)
t:t+d) ∝

Qd
k=1 p(h

(i)
t+k|h(i)

t+k−1)×
×p(h

(i)
t |s(i)

0:t−1,x0:t−1)qt+d(s
(i)
t:t+d) (14)

so that the channel vector h
(i)
t is drawn from the Gaussian

distribution p(h
(i)
t |s(i)

0:t−1,x0:t−1), which is given by the KF

operating on particle i, and h
(i)
t+1:t+d are predicted using the prior

PDFs p(h
(i)
t+k|h(i)

t+k−1).

Since h
(i)
t:t+d and s

(i)
t−m+1:t−1 are already available, we can

use them to suppress the causal inter-symbol interference in the
observations and obtain

x̄
(i)
t,d = xt,d − H̆

(i)
t,ds̆

(i)
t,d

where s̆
(i)
t,d = [s

(i)�
t−m+1, · · · , s

(i)�
t−1 ]� is an N(m − 1) × 1 vector,

H̆
(i)
t,d =

2
6666664

H(i)
t (m − 1) H(i)

t (m − 2) . . . H(i)
t (1)

0 H(i)
t+1(m − 2) . . . H(i)

t+1(1)
...

...
. . .

...
0 0 · · · H(i)

t+d−1(1)
0 0 · · · 0

3
7777775

is an L(d + 1) × N(m − 1) matrix. Conditional on ht:t+d =

h
(i)
t:t+d and st−m+1:t−1 = s

(i)
t−m+1:t−1, the resulting model for

the observations is

x̄
(i)
t,d = H̄

(i)
t,ds̄t,d + gt,d,

where s̄t,d = [s�t+d, · · · , s�t ]� and H̄
(i)
t,d is an L(d+1)×N(d+1)

matrix obtained by removing the first N(m − 1) columns of
matrix H

(i)
t,d, constructed according to model (13), and taking the

remaining ones backwards.
Finally, the observations can be cast into the convenient form

z
(i)
t,d = U

(i)−1

t,d H̄
(i)�
t,d x̄

(i)
t,d = U

(i)�
t,d s̄t,d + ǵ

(i)
t,d, (15)

where the upper-triangular N(d + 1) × N(d + 1) matrix U
(i)
t,d

is the Cholesky factor of R̄
(i)
t,d = H̄

(i)�
t,d H̄

(i)
t,d = U

(i)
t,dU

(i)�
t,d ,

and ǵ
(i)
t,d is a Gaussian vector with zero mean and covariance

matrix Σ
(i)
t,d = U

(i)−1

t,d H̄
(i)�
t,d Dg,tH̄

(i)
t,dU

(i)−�
t,d , where Dg,t is an

L(d+1)×L(d+1) diagonal matrix with σ2
g,t+�k/L� in the (k, k)

position.
Symbols st:t+d can now be sequentially sampled (starting

with st(1)) using model (15). Let [Q]i,j denote the element in
the i-th row and j-th column of Q (and similar notation, [q]i, for
vectors). Then, we have (for k = 1, ..., N(d + 1))

[z
(i)
t,d]k =

kX
l=1

u
(i)
l,kst+�l/N�(1 + (l ÷ N)) + [ǵ

(i)
t,d]k, (16)

where u
(i)
l,k is the element in the (l, k) position of matrix U

(i)
t,d,

�α� denotes the largest integer no greater than α and (x ÷ y) is
the remainder of x/y. Using (16) we can sample the symbols
in st:t+d sequentially [9]. Assume, for simplicity, that S =
{±1} (the extension to a larger alphabet is straightforward), then
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symbol s
(i)
t+k(n) is drawn conditional on s

(i)
t (1), . . . , s

(i)
t+k(n− 1)

according to the probabilities

Probt+d{st+k(n) = 1} = Prob{γ(i)
t+k(n) > 0}

Probt+d{st+k(n) = −1} = Prob{γ(i)
t+k(n) < 0}

where

γt+k(n) =

[z
(i)
t,d

]kN+n−PkN+n−1
l=1 ul,kN+nst+�l/N�(1+(l÷N))

u
(i)
kN+n,kN+n

(17)

is a Gaussian random variable with mean st+k(n) and variance

u
(i)−2

kN+n,kN+n[Σ
(i)
t,d]kN+n,kN+n.

Finally, the proposal PDF for particle i can be recursively
evaluated as

qt+d(h
(i)
t:t+d, s

(i)
t:t+d) ∝

Qd
k=1 p(h

(i)
t+k|h(i)

t+k−1)×
×p(h

(i)
t |s(i)

0:t−1,x0:t−1)
Qd

k=0

QN
n=1 Probt+d{s(i)

t+k(n)}.
(18)

The propagation of a single particle in the proposed smoothing
algorithm requires d + 1 KF steps in order to evaluate the right-
most likelihoods in the numerator of (12) and the evaluation of
|S|N(d+1) symbol probabilities, instead of the |S|N(d+1) symbol
vector probabilities in the optimal smoothing algorithm (10), (11).

4. SIMULATION RESULTS

For our numerical experiments, we have considered a binary
modulation format with symbol alphabet S = {±1}, and a
frequency-selective MIMO channel with N = 2 inputs, L = 3
receiving antennas and a channel impulse response of length m =
2. The channel AR model parameters are α = 1 − 10−5 and
σ2

v = 10−4. We assume transmission is carried out in bursts
of 300 bits and the first 15 bits in each frame are used as a
trainig sequence to obtain an initial (rough) estimate of the channel
response. Within this simulation setup, we have compared the
optimal SMC filtering algorithm (8)-(9), the proposed complexity-
constrained SMC smoother and the standard Maximum Likelihood
Sequence Detector (MLSD) with known channel response, which
is used as a performance reference. The smoothing lag for the
smoothing equalizer is d = 1 and the number of particles for
both SMC algorithms is M = 30, which perform marginal MAP
detection according to (5).

Figure 1 shows the obtained results. It is seen that the
proposed SMC smoother attains a nearly optimal bit error
probability (less than 1 dB away from the reference curve at
BER= 10−3) and clearly outperforms the optimal SMC filter.
This is particularly remarkable because the complexity per particle
of both equalizers is similar. The optimal SMC smoother, which
has not been included in the simulation, outperforms the proposed
equalizer, but its complexity per particle is much higher.

5. CONCLUSIONS

Existing particle filtering methods for MIMO channel equalization
suffer from a stringent limitation because their computational
complexity per particle grows exponentially with the number of
input data streams. In this paper, we have introduced a novel

3 4 5 6 7 8 9 10 11 12
10

4
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10
2

10
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10
0

SNR(dB)

B
E

R

Optimal filter
Smoother
MLSD (known channel)

Fig. 1. BER for several values of the SNR (dB).

sampling scheme that avoids this drawback by sampling data
sequentially across data streams. Using this approach, we have
designed a constrained-complexity SMC equalizer which attains
nearly optimal BER, as illustrated by our computer simulations.
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