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ABSTRACT

An orthogonal frequency division multiplex (OFDM) system with
block-precoding is studied. It is observed that the correlation ma-
trix of the post-DFT data is equal to the direct-product of the chan-
nel vector multiplied element-by-element with the product of the
precoding matrix and its Hermitian. Therefore, an element-by-
element division of the post-DFT correlation matrix by the product
of the precoding matrix and its Hermitian gives a rank-one matrix
whose only singular vector coincides the channel vector up to a
phase ambiguity. The design criteria of the precoding matrix is
discussed.

1. INTRODUCTION

Orthogonal frequency division multiplex (OFDM) has been identi-
fied as an effective technique to achieve high-speed data transmis-
sion over frequency-selective fading channels. It sends multiple
data streams through a number of subbands of the total spectrum,
each subband being narrow enough such that the channel fading is
frequency flat. Orthogonality among the subcarriers is maintained
while subbands are allowed to overlap.

An efficient implementation of OFDM may contain the fol-
lowing steps (c.f. Fig. 1). First, the information-bearing symbol,
modulated via any type of constellation (e.g., BPSK, QAM) is seg-
mented into blocks. IDFT is then performed on each block, and a
preamble, consisting of the last several IDFT coefficients, called
cyclic prefix (CP), is appended in front of the IDFT block. The
augmented blocks are sent one after the other through the com-
munication channel. As long as the effective time-spread of the
channel is smaller than the length of the CP, inter-block interfer-
ence only contaminates the CP part. After the CP being removed,
the remaining of the received block, which is free and inter-block
interference, can be shown to be equal to the cyclic convolution
of the channel and the corresponding block of the information-
bearing symbols. Thus, taking DFT on it leads to the original sym-
bol block scaled symbol-by-symbol by the frequency samples of
the channel at each individual subcarriers .

For coherent detection of the information symbols in each data
block, reliable estimation of the channel at each frequency sample
is crucial. Training/pilot symbols may be used for this purpose,
e.g., [1]. However, blind channel estimation methods are well mo-
tivated for their spectral efficiency. Many blind methods estimate
the time-domain channel using the pre-DFT channel output; the
frequency-domain channel can be obtained by taking DFT of the
estimates. Heath and Giannakis’ method [2] uses the cyclosta-
tionarity induced by the CP. Also based on the cyclostationarity

0This work was supported by ONR (Grant N00014-03-1-0123).

but in an implicit manner, the methods of Muquet’s et. al. [3],
Cai and Akansu’s [4] and Zhuang’s et. al. [5] uses the subspace
structure of the pre-DFT data. There are also blind methods di-
rectly estimate the frequency-domain channel using the post-DFT
signal. Zhou and Giannakis [6] have proposed one based on the
finite-constellation property of the information symbols. Wang
and Chen [7] have proposed to use the receiving diversity.

Frequency-domain precoding is an effective measure to cre-
ate frequency diversity in OFDM so as to avoid the catastrophic
effects of channel zeros at certain subcarriers [8]. The precoding
also facilities blind channel estimation. The subspace-based meth-
ods in [9, 10] uses the redundancy introduced by the precoding.
While, an non-redundant precoding scheme for blind channel esti-
mation has also been proposed [11], which, by superimposing the
information symbol of one subchannel. on all other ones, allows
simple channel estimation through correlating the output of each
subchannel to that of that superimposed one.

In this work, we show that blind OFDM channel estimation
using non-redundant linear precoding is generally doable with al-
most any coding schemes. It is observed that the correlation matrix
of the post-DFT data, if divided element-by-element with the prod-
uct of the precoding matrix and its Hermitian, is equal to the direct-
product of the channel vector. Therefore, an SVD can be revoked
to recover the channel up to a phase ambiguity. Though some spe-
cial precoder allows simple channel estimation algorithms such as
that proposed in [11], others may simplify the encoding procedure.
For example, a circular precoding matrix replaces the matrix mul-
tiplication operation in the coding procedure with a simple vector
weighting. It also allows trade off the conflicting requirement for
the precoder from the viewpoints of channel estimation and sym-
bol error probability through a single parameter.

2. SIGNAL MODEL

Figure 1 shows the linearly precoded OFDM system (in its base-
band, baud-rate, discrete-time form) that we are considering. The
significant component is the linear precoder, which maps every,
say the i-th, block of N information symbols {di,n, n = 0, . . . , N−
1} to block of N coded symbols, {si,n, n = 0, . . . , N − 1} by a
linear transform. In matrix form, the precoding is described as

si = Adi , (1)

where di = [di,0 . . . di,N−1]
T , si = [si,0 . . . si,N−1]

T , and A
is an N × N coding matrix. Note that the precoding does not
introduce any redundancy. For unique decodability, we require

a1) A be full rank.
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Fig. 1. OFDM system with linear precoder

The coded block si goes through the regular OFDM proce-
dure: IDFT and CP-added before it is fed into the channel. The ith
received signal block after removal of the CP and DFT is

yi = Hsi + vi = HAdi + vi , (2)

where H = diag{h̃(0), . . . , h̃(N−1)} and {h̃(k), k = 0, . . . , N−
1} are the DFT coefficients of the channel, and vi = [vi,0, . . . , vi,N−1]

T

models the noise. We assume that vi,k is complex, circular-Gaussian,
zero-mean, σ2-variance, and white across subcarriers and across
blocks.

3. BLIND CHANNEL ESTIMATION THROUGH SVD

Our proposed blind channel estimation method is based on an in-
teresting structure of the correlation matrix of the post-DFT signal
yi due to the linear precoding. The correlation matrix of yi can be
written as

R = E[yiy
H
i ] = HAAHHH + σ2I , (3)

assuming whiteness and unit-power of the information symbol se-
quence. A critical observation as shown in (4) can be made, where
bij is the (i, j)-th entry of AAH , h̃ = [h̃(0) . . . h̃(N − 1)]T , and
� means element-by-element multiplication.

If the matrix

a2) AAH has unit diagonal entries and no zero en-
tries,

which can always be satisfied by properly choosing A, we can
perform an element-by-element division of R with AAH . The
quotient is

W = R./(AAH) = h̃h̃
H

+ σ2I , (5)

where ./ is a symbol of element-by-element division borrowed
from MatlabTM notations. It can be seen that the singular value

decomposition (SVD) of W directly gives the channel h̃ with a
phase ambiguity as the only singular vector. While, the phase am-
biguity can be easily taken care of by a single training symbol or
made irrelevant by using differential modulation. In addition, since
only one singular vector which corresponding to the only nonzero
singular value is needed, the SVD can be performed using simple
algorithm.

3.1. Identifiability

The proposed method can identify any channels (up to a phase
ambiguity), as long as a2) is satisfied. This fact can be easily seen
from the uniqueness of the SVD. It deserves notice that the iden-
tifiability is guaranteed even when a channel has nulls at some
subcarriers, a property that most channel estimation methods for
OFDM do not possess.

3.2. Symbol Detection

After the channel has been obtained, symbol detection is straight-
forward. A simple zero-forcing solution is

d̂i = (ĤA)−1yi , (6)

where d̂ and Ĥ denoted the estimated versions of their counter-
parts. It may be noted that channel zeros at some subcarriers may
cause the fail of the detection of those symbols on those subcar-
riers. A direct evidence is that HA will lose rank in that case,
causing the model in (2) under-determined. This is a common is-
sue in OFDM systems. However, this problem can be solved with
a redundant precoder. If the channel has a duration L, it has at
most L− 1 nulls. Suppose that the coding matrix A is an N ×M
matrix with M ≥ N + L − 1. Then, HA is guaranteed full
column-rank and thus reliable symbol detection is achieved. Our
propose channel estimation method applies to this redundant pre-
coding case, though the derivation of the method have assumed
non-redundant precoding.
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HAAHHH =

⎡
⎢⎢⎢⎣

b11|h̃(0)|2 b12h̃(0)h̃∗(1) . . . b1N h̃(0)h̃∗(N − 1)

b21h̃(1)h̃∗(0) b22|h̃(1)|2 . . . b2N h̃(1)h̃∗(N − 1)
...

...
. . .

...
bN1h̃(N − 1)h̃∗(0) bN2h̃(N − 1)h̃∗(1) . . . bNN |h̃(N − 1)|2

⎤
⎥⎥⎥⎦

= (AAH) � (h̃h̃
H

) (4)

4. DESIGN CRITERIA FOR THE PRECODER

Though the precoder A enables blind channel estimation, it causes
inter-carrier interference. Consider the symbol detection proce-
dure of (6). Since

d̂i = di + (ĤA)−1vi , (7)

the symbol error probability is determined by the signal-to-noise
ratio (SNR):

SNR =
E[‖di‖2]

E[‖(ĤA)−1vi‖2]

=
N

E[tr{(AAH)−1H−1vvHH−H}]
=

1

σ2

N

tr[(AAH)−1]
. (8)

Here, we have assumed normalized channel. Because tr[AAH ] is
the transmission power (c.f. (1)) and is thus fixed to N for normal-
ization, it can be easily derived that tr[(AAH)−1] ≤ N and the
equality holds only when A is a unitary matrix, i.e., AAH = I .
However, unitary matrices will not satisfy a2), hence is not appli-
cable. Therefore, the precoder will always introduce an SNR loss.
To reduce this loss, AAH should be as close to the identity matrix
as possible, i.e., having small off-diagonal entry.

However, from (5), we see that small values of the entry of
AAH may cause higher errors due to its amplification of any er-
rors in estimating the correlation matrix R. Therefore, the require-
ments for A for channel estimation and for error probability need
to trade off.

4.1. Circular Precoder

We conjecture that a “good” precoder A could in the form of

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

√
ρ

√
1−ρ
N−1

. . .
√

1−ρ
N−1√

1−ρ
N−1

√
ρ . . .

√
1−ρ
N−1

...
...

. . .
...√

1−ρ
N−1

. . .
√

1−ρ
N−1

√
ρ

⎤
⎥⎥⎥⎥⎥⎥⎦

(9)

for some 0 < ρ < 1. We note that this A satisfies a1) and a2) and
has unit norm for all rows. The circular symmetry of it is motivated
by the symmetry of the subcarriers and the fact that circular matri-
ces have a DFT eigen-structure. The latter property may simplify
the implementation of the precoder.

Since A as given in (9) is circular, its eigen-decomposition is

A =
1

N
FΛF H , (10)

IDFT

d i
x i

X

X

X

0

1N

Fig. 2. Alternative implementation of circular precoder

where F = [e−j2π/Nnk]0≤k≤N−1
0≤n≤N−1 is the DFT matrix, Λ = diag{λ0,

. . . , λN−1} and λn is the eigen-value of A and given by the DFT
of the first row of A. If we substitute (10) in to (1) and note that
the transmitted signal xi is the IDFT of si, then we have

xi = F HFΛF Hdi = ΛF Hdi . (11)

(11) gives us an alternative implementation of the precoding, as
shown in Figure 2, in which the precoding is achieved by weighing
the time-domain data.

With A in the form of (9), AAH can be obtained as

AAH =

⎡
⎢⎢⎢⎣

1 α . . . α
α 1 . . . α
...

...
. . .

...
α . . . α 1

⎤
⎥⎥⎥⎦ (12)

where α = 2
√

ρ(1 − ρ)/(N − 1) + (1 − ρ)(N − 2)/(N − 1).
We can control the value α of the off-diagonal entries of AAH by
adjusting ρ.

Since AAH is also circular, its eigen-values can be obtained
as the DFT of its first row, which are η0 = 1 + (N − 1)α and
ηk = 1 − α, k = 1, . . . , N − 1. We know that

tr[(AAH)−1] =

N−1∑
k=0

1

ηk
=

1

1 + (N − 1)α
+

N − 1

1 − α
. (13)

Therefore, the SNR loss due to the precoder can also be controlled
by the parameter ρ.

5. SIMULATIONS

We have simulated an OFDM system with 16 subcarriers (also the
DFT size). The precoder is chosen according to (9) with different
ρ values. The channel model used is a 3-tap FIR filter with tap
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coefficients independently chosen from a white Gaussian process.
The CP length is set to 5 to accommodate the channel spread. The
noise is additive white Gaussian noise. The modulation scheme is
16-QAM

We use the normalized MSE as the figure of merit for the chan-
nel estimation, which is defined as

NMSE =
1

M1M2

M1∑
i=1

M2∑
j=1

∑N−1
k=0 [h̃i(k) − ˆ̃

h
i,j

(k)]2∑N−1
k=0 [h̃i(k)]2

, (14)

where M1 is the number of channel realizations in the simulations,
M2 is the number of data and noise realizations for each channel

realization, and h̃i(k), ˆ̃
h

i,j

(k) are the i-th realization of the chan-
nel and its estimate at the j-th Monte Carlo run, respectively. For
one point of NMSE value, we do the simulation for 60 channel
realizations, each for 100 data and noise realization. In addition,
we use 50 OFDM blocks to compute the correlation matrix for
each channel estimation.

Fig. 3 shows NMSE figure versus the signal-to-noise (SNR)
ratio for several different ρ value, and Fig. 4 shows the bit-error-
rate (BER) using the estimated channel for coherent detection.

6. CONCLUSION

We have proposed an SVD-based blind channel estimation method
for linearly precoded OFDM systems. This method works with
non-redundant precoders to identify even channels with zeros on
the unit circle. We have also discussed some design criteria of
the precoder and give heuristically a “good” precoder which can
be optimized with only one parameter. However, the “optimal”
precoder is still yet to be studied. Another interesting research may
be how to explore traditional codes, such as a block code for error
correcting in the place of the precoder, for the channel estimation
purposes.

7. REFERENCES

[1] M. Morelli and U. Mengali, “A Comparison of Pilot-Aided
Channel Estimation Methods for OFDM Systems,” IEEE
Trans. Signal Processing, vol.49, no.12, pp.3065-3073, Dec.
2001.

[2] R. W. Heath and G. B. Giannakis, “Exploiting input cyclosta-
tionarity for blind channel identification in OFDM systems,”
IEEE Trans. Signal Processing, vol. 47, no.3, pp.848-856,
Mar.1999.

[3] B. Muquet, M. de Courville, P. Duhamel, and V. Buenac,
“A subspace based blind and semi-blind channel identifica-
tion method for OFDM systems,” in Proc. SPAWC, Annapolis,
MD, May 1999, pp.170-173.

[4] X. Cai and A. N. Akansu, “A subspace method for blind chan-
nel identification in OFDM systems,” in Proc. ICC, New Or-
leans, LA, Jul. 2000, pp. 929-933.

[5] X. Zhuang, Z. Ding and A. L. Swindlehurst, “A Statistical sub-
space method for blind channel identification in OFDM com-
munications,” in Proc. ICASSP, Istanbul, Turkey, Jun. 2000,
vol.5, pp.2493-2496.

[6] S. Zhou and G. B. Giannakis, “Finite-Alphabet Based Chan-
nel Estimation for OFDM and Related Multicarrier Systems,”

0 2 4 6 8 10 12 14 16 18 20
10

4

10
3

10
2

10
1

10
0

SNR

N
LS

C
E

ρ = 0.9 

ρ = 0.5 

ρ = 0.1 

Fig. 3. NMSE performance of the proposed blind channel estima-
tion method

0 2 4 6 8 10 12 14 16 18 20
10

2

10
1

10
0

SNR

B
E

R

ρ = 0.1 

ρ = 0.5 

ρ = 0.9 

w/ CSI 

Fig. 4. BER performance of the proposed blind channel estimation
method

IEEE Trans. Commun., vol.49, no.8, pp.1402-1414, Aug.
2001.

[7] H. Wang, Y. Lin and B. Chen, “Data-Efficient Blind OFDM
Channel Estimation Using Receiver Diversity,” IEEE Tran.
Signal Processing, vol.51, no.10, pp.2613-2623, Oct. 2003.

[8] Z. Wang and G. B. Giannakis, “Linearly precoded or coded
OFDM against wireless fades?” in Proc. SPAWC’01, Taoyuan,
Taiwan, March 2001.

[9] S. Zhou, B. Muquet, G. B. Giannais, “Subspace-based (semi-
) blind channel estimation for block precoded space-time
OFDM,” IEEE Trans. Signal Proc., vol. 50, no.5, pp. 1215
- 1228, May 2002.

[10] R. Zhang, “Blind OFDM Channel Estimation through Lin-
ear Precoding: A Subspace Approach,” in Proc. Asilomar’02,
Pacific Grove, CA, Nov. 2002.

[11] A.Petropulu and R. Zhang, “Blind OFDM Channel Estima-
tion through Simple Linear Precoding,” IEEE Trans. Wireless
Commun., vol.3, no.2, pp.647-655, March, 2004.

III - 472

➡ ➠


