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ABSTRACT

This paper presents a blind joint channel and interference
suppression for orthogonal frequency-division multiplexing
(OFDM) systems. Our approach uses a generalized multi-
channel minimum variance principle to design an equaliz-
ing filterbank that preserves the desired signal components
and suppresses the overall interference. Channel estimate
is then obtained by deriving an asymptotically tight lower
bound of the filterbank output power, which reduces the
problem to a quadratic minimization. While a channel esti-
mate may be obtained by directly maximizing the filterbank
output power through multidimensional nonlinear searches,
such an approach is computationally prohibitive and suf-
fers local convergence. Numerical examples show that the
proposed scheme approaches the Cramér-Rao bound (CRB)
as the SNR increases. It also exhibits low sensitivity to
unknown narrowband interference and compares favorably
with a subspace blind channel estimator.

1. INTRODUCTION

OFDM is a multicarrier digital modulation technique that
allows high data rate transmission such as digital TV broad-
casting and high-speed telephone line communications. In
OFDM, the transmitted information is transformed by the
inverse fast Fourier transform (IFFT) into parallel blocks.
When the channel is dispersive, inter-block interference (IBI)
between successive blocks occurs. To eliminate the IBI, a
cyclic prefix (CP) is inserted at the beginning of each trans-
mitted data block. By choosing the length of the CP to
be greater than the channel impulse response, successive
blocks will not interfere and can be reliably recovered at
the receiver’s end.

Numerous channel estimation schemes have been in-
vestigated recently. These schemes rely on either explicit
training (e.g., [1]) or some inherent structure (e.g, subspace
[2]) of the transmitted signal. Although the training-assisted
schemes perform quite well, they reduce the spectral effi-
ciency. Moreover, in order to track channel variations, train-
ing symbols have to be retransmitted periodically, leading to
throughput reductions. Blind schemes, on the other hand,
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do not suffer from such drawbacks. A well-known blind
channel estimation schemes for MC are the subspace-based
methods proposed in (e.g., [2, 3]). However, when there is
insufficient information about the interference so that pre-
whitening cannot be performed, subspace channel estima-
tion is in general inaccurate.

In this work, we design an equalizing filterbank to solve
the problem of joint blind channel estimation and interfer-
ence suppression for OFDM. Based on a generalized mul-
tichannel minimum variance principle, the desired signal
components are preserved while suppressing the overall in-
terference. Channel estimate is then obtained by deriving an
asymptotically (in SNR) tight lower bound of the filterbank
output power, which reduces the problem to a quadratic
minimization. Even though multi-dimensional non-linear
search methods can be applied to find channel estimates
by directly maximizing the filterbank output power, such
an approach is computationally prohibitive and suffers lo-
cal convergence. Numerical examples show that the pro-
posed scheme exhibits low sensitivity to unknown narrow-
band interference and compares favorably with a subspace
blind channel estimator. Furthermore, we compare the pro-
posed scheme with the CRB which, similar to the proposed
blind channel estimator, does not assume the knowledge of
the transmitted information symbols.

Notation: Vectors (matrices) are denoted by boldface
lower (upper) case letters; all vectors are column vectors;
superscripts (·)T , (·)∗ and (·)H denote the transpose, conju-
gate and conjugate transpose, respectively; IN denotes the
N ×N identity matrix; 0 denotes an all-zero matrix or vec-
tor; tr{·} denotes the trace; vec(·) stacks the columns of
its matrix argument on top of one another; E{·} denotes
the statistical expectation and finally, ⊗ denotes the matrix
Kronecker product.

2. PROBLEM FORMULATION

Consider an OFDM system where a serial of information
symbols s(n) = [s(nK), · · · , s(nK+K−1)]T are blocked
into K × 1 vectors , which are linearly transformed into
u(n) = Fs(n) by J × K matrix F � [F̄T

1 , F̄T ]T , where F̄

denotes the K × K IDFT unitary matrix, and F̄1 ∈ C
µ×K

is formed from the last µ � J − K rows of F̄, where µ is
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the length of the cyclic-prefix. To avoid multipath-induced
inter-block interference (IBI), transmission redundancy is
introduced by choosing J ≥ K +L, where L is the channel
order.

In what follows, we will process a block of N ≥ 1
OFDM symbols simultaneously. Let

sN (n) =

⎡
⎣

s(nN)
...

s(nN + N − 1)

⎤
⎦

KN×1

,

uN (n) =

⎡
⎣

u(nN)
...

u(nN + N − 1)

⎤
⎦

JN×1

= (IN ⊗ F)sN (n).

(1)
The discrete-time baseband equivalent channel, which in-
cludes the transmitter/receiver filter and the physical chan-
nel, is modeled as an FIR filter h � [h(0), h(1), · · · , h(L)]T .
Hence, the overall received samples resulting from the trans-
mission of uN (n) is JN + L. We discard the first and last
L samples and form a (JN − L) × 1 vector yN (n) which
can be expressed as [2]:

yN (n) =H(IN ⊗ F)sN (n) + wN (n) + eN (n),

n =1, 2, · · · , P
(2)

where wN (n) and eN (n) denote interference and channel
noise vectors respectively, and H is an (JN − L) × JN
Toeplitz matrix defined as:

H =

⎡
⎢⎢⎣

hL · · · h0 0 · · · · · · 0
0 hL · · · h0 0 · · · 0
...

...
0 · · · · · · 0 hL · · · h0

⎤
⎥⎥⎦ . (3)

It is seen that H(IN ⊗ F) is a tall matrix with full column
rank if JN − L ≥ KN or equivalently, N ≥ L

J−K
. If the

length of the cyclic prefix is chosen as J −K = L, then the
minimum value of N that is needed is equal to one.

The problem of interest is to estimate the channel co-
efficients {h(n)}L

n=0 from the observed data without any
knowledge of the transmitted symbols.

3. PROPOSED SCHEME

Equation (2) represents a multiple-input multiple-output sys-
tem with KN inputs and JN −L outputs. The mixing ma-
trix H(IN ⊗ F) is partially known since H has a known
Toeplitz structure and F is also known to the receiver. We
can exploit this knowledge to design a bank of KN FIR
filters G ∈ C

(JN−L)×KN), each passing one symbol with
unit-gain, completely annihilating the other KN − 1 inter-
fering symbols, meanwhile suppressing interference wN (n)
as much as possible. In particular, we design an equalizing
filterbank according to the following minimum variance cri-
terion:

G = arg min
G∈C(JN−L)×KN

tr
{
GHRG

}
,

subject to GHH(IN ⊗ F) = IKN ,
(4)

where R � E{yN (n) × yH
N (n)} denotes the sample co-

variance matrix, and the constraint GHH(IN ⊗F) = IKN

ensures that each filter (i.e.,one column of G) will pass
only one signal component

[
corresponding to one column

of H(IN⊗F)
]

undistorted with unit-gain, while completely
eliminating inter-symbol interference (ISI) caused by the
other columns of H(IN ⊗ F). Using the Lagrange mul-
tiplier, the solution to the above constrained quadratic min-
imization problem is given by:

G = R−1H(IN ⊗F)
[
(IN ⊗F)HHHR−1H(IN ⊗F)]−1.

(5)
Substituting (5) into (4), the minimized average power of
the filterbank output is given by

V1(h) = tr
{[

(IN ⊗ F)HHHR−1H(IN ⊗ F)]−1
}

= tr
{[

HHR−1H(IN ⊗ FFH)]−1
}

,
(6)

where we used the fact that tr(AB) = tr(BA) for any
A and B with compatible size. We note here that channel
estimate may be obtained by directly maximizing the output
power V1(h) through multidimensional nonlinear searches,
however, such approach is computationally prohibitive and
suffers local convergence. To overcome this difficulty, we
derive an asymptotically (in SNR) tight lower bound for the
output power and then use it for channel estimation. Using
the Schwartz inequality (see [4]), maximizing V1(h) w.r.t
(with respect to) h is equivalent to minimizing the following
asymptotic lower bound:

V2(h) = tr
{
HHR−1H

[
IN ⊗ (FFH)

]}

= vecT (H∗)
{[

IN ⊗ (FFH)
]
⊗ R−1

}
vec(H),

(7)
which becomes a quadratic minimization problem. Next,
we express vec(H) explicitly as a linear function in h. In
particular, we can write

vec(H) = Sh, (8)

where S is a (JN − L)JN × (L + 1) matrix formed by
elements 0 and 1 only. It is seen that vec(H) is full column
rank since the above mapping is one-to-one. For example,
if L = 2 i.e., 3-tap FIR channel, then S can be expressed as
in (9), shown on top of the next page.

A number of remarks on the structure of S are in order:

• There are JN blocks, each block is of size (JN −
L) × (L + 1).

• Block number 1: 1st row is formed by last row of
IL+1; zeros elsewhere.

• Block number 2: first 2 rows formed by last 2 rows of
IL+1; zeros elsewhere.

• Block number L + 1: first L + 1 rows from IL+1;
zeros elsewhere.
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S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1
0(JN−L−1)×(L+1)

0 1 0
0 0 1

0(JN−L−2)×(L+1)

1 0 0
0 1 0
0 0 1

0(JN−L−3)×(L+1)

...
0(JN−L−2)×(L+1)

1 0 0
0 1 0

0(JN−L−1)×(L+1)

1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

}
block #1

}
block #2

}
block #3

...

}
block #JN − 1

}
block #JN

.

(9)

• Block number JN − L: last L + 1 rows from IL+1;
zeros elsewhere.

• Block number JN − 1: last 2 rows formed by first 2
rows of IL+1; zeros elsewhere.

• Block number JN : last row formed by first row of
IL+1; zeros elsewhere.

• Explicit expression of S can be obtained by using ele-
mentary matrix Eij : a (JN−L)×(L+1) matrix with
unit element at the ijth location and zeros elsewhere.
For example, the first L blocks, Sl, may be expressed
as Sl =

∑l

j=1 El−j+1,L+2−j , l = 1, 2, · · · , L. The
rest of Sl for l = L + 1, · · · , JN , can be expressed
in a similar fashion.

Using vec(H) = Sh from (8) back in eq. (7), we have

V2(h) = hHSH
{[

IN ⊗ (FFH)
]
⊗ R−1

}
Sh � hHΦh,

(10)
where

Φ(L+1)×(L+1) � SH
{[

IN ⊗ (FFH)
]
⊗ R−1

}
S. (11)

The solution ĥ that minimizes V2(h) is given by the eigen-
vector of Φ associated with the smallest eigenvalue. We
note that the calculation of Φ has to be performed care-
fully because of the large dimensions of the matrices in-
volved: FFH is J × J , IN ⊗ (FFH) is JN × JN , S

is (JN − L)JN × (L + 1) and
[
IN ⊗ (FFH)

]
⊗ R−1

is a (JN − L)JN × (JN − L)JN matrix (e.g. 14336×
14336 for N = 2, J = 64 and L = 16). Hence, brute-
force computation is impractical/inefficient except for small
values. The spars structure of the matrices involved has to
be exploited for efficient implementation. Because of the
limited space, algorithm implementation was omitted. We
also note that the matrix R has to be replaced by some co-
variance matrix estimate, e.g., the sample covariance matrix

1 N +1 M - N +1 

2

N

N +2 

2N

M - N +2 

M

P blocks

      (a)

1 2 M - N +1 

2

N

3

N +1 

M - N +2 

M

M - N +1 blocks 

          (b)

Fig. 1. (a) Non-overlapping OFDM symbols. (b) Overlap-
ping OFDM symbols

R̂ = P−1
∑P−1

n=0 yN (n)yH
N (n) or some adaptive estimate

of R. It can be shown (e.g., [5]) that ĥ converges to the
true channel h (up to a scalar factor) as the interference and
noise vanish. For finite SNR and in the presence of inter-
ference, we evaluate the accuracy of ĥ via simulations in
Section 4. Finally, like all other blind schemes, the channel
estimate ĥ has a scalar ambiguity, which can be resolved
either by differential coding or by transmitting a few pilot
symbols.

4. NUMERICAL RESULTS

In what follows, we present simulation results reflecting two
different scenarios based on how the received signal is being
processed. Precisely, we form blocks of N symbols each,
and have the N -symbols arranged in overlapping and non-
overlapping fashion. To see this, let the total number of
OFDM symbols M equals to an integer multiples of N i.e.
M = NP for any integer P . As illustrated by Figure 1,
this will result in P and M − N + 1 non-overlapping and
overlapping blocks simultaneously.

The mathematical expression for the received ofdm non-
overlapping symbols is given by equation (2). By forming
an overlapping symbols, the received data will have similar
expression as in equation (2) with the index n running from
1 to M + N − 1.

We compare here the proposed method with the sub-
space blind channel estimators [2]. The system under study
utilizes the IDFT transform and a BPSK constellation with
K = 48 and N = 2. Additionally, both estimators use a
total of M = 204 OFDM symbols for channel estimation.
The channel is a four-tap (L = 3) FIR channel. Two nar-
rowband interfering signals are added with various values of
signal-to-interference ratio (SIR). As a performance mea-
sure, we consider here the normalized root mean-squared

error (RMSE) defined as 1
‖h‖

√
1

D(L+1)

∑D

i ‖ĥi − h‖2 that

is averaged over D = 500 Monte Carlo runs.
Figures 2(a) and 2(b) show the performance versus SNR

and SIR for both non-overlapping and overlapping scenar-
ios respectively. In the absence of interference (i.e., SIR =
∞), the subspace estimator outperforms the proposed scheme
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Fig. 2. Normalized RMSE of the proposed and subspace blind channel estimates versus SNR and SIR, for K = 48, L = 3
and N = 2. (a) No overlapping. (b) Overlapping.

slightly. However, even with fairly weak interference (i.e.,
SIR = 10dB), the subspace estimator degrades significantly
and exhibit irreducible error. By employing an overlapping
structure on the received data symbols, a significant perfor-
mance improvement can be obtained for both estimators as
seen in Figure 2(b).

Figure 3 depicts the RMSE of the proposed and sub-
space channel estimators along with the CRB for SIR = 10
dB. We see that the proposed scheme approaches the CRB
as the SNR increases for both the overlapping and non-
overlapping symbols. Meanwhile, the subspace scheme is
suffering from the moderately increased interference level.

5. CONCLUSIONS

We have presented a blind joint channel and interference
suppression for orthogonal frequency-division multiplexing
(OFDM) systems. A generalized multichannel minimum
variance principle was invoked to design an equalizing fil-
terbank that preserves desired signal components and sup-
presses the overall interference. To overcome computational
difficulty and local convergence problems that accompany
multidimensional search methods, we’ve derived an asymp-
totically (in SNR) tight lower bound of the filterbank output
power and used it for channel estimation, which reduces the
problem to a quadratic minimization. To assess the perfor-
mance of the proposed scheme, numerical examples were
presented. The proposed scheme compares favorably with
a subspace blind channel estimator in the presence of un-
known narrowband interference and approaches the CRB
as the SNR level is increased. By imposing an overlapping
structure on the received data symbols, the performance of
both estimators was significantly improved.
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